
Napkin Sketch Visualizations – Sketch-Based Authoring of
Improvisational Visualizations

William O. Chao
wochao@gmail.com

Description of Domain
Can you think of a time when you wished you could quickly sketch a visualization to
illustrate a point? Was it while teaching an graphics class? Perhaps it was while
collaborating with a group on a project? Or possibly it was to look at something quickly
while brainstorming a project, and not interrupting your flow of work in the process? This
project is aimed at exploring quick creation of visualizations for improvisational purposes,
whether it is quickly demonstrating data live in a presentation, visualizing to move a
conversation in a collaborative process, informally toying around with visualization ideas to
see how they'd look, or even teaching information visualization principles in a classroom
setting.

Description of Task
The task of this project is to enable the creation of on-the-fly visualizations for interfaces
geared toward natural sketch-like input such as touch and pen interfaces. The hope is that
this will become useful as interfaces shift from traditional keyboard+mouse interactions, to
more free-form, widely applicable touch, gesture, and drawing kinds of interactions. To
simplify the scope of the project, the initial focus will be on creating area and wedge based
visualizations, and then expanding to other types should time permit.

Description of Dataset being Targeted
To simplify things, this project will aim at creating visualizations for tabular, structured data,
most likely from CSV or similar file-based sources (as opposed to stored in a database).
The data will be of a magnitude that can comfortably be loaded and manipulated in
Javascript without causing a slowdown when using linear complexity algorithms to work
with the data. This data should contain no unknown points.

Personal Expertise
In order to help me with this project, I will draw on some past learning experiences. I've
worked with and informally evaluated various visualization programs such as Inspire,
GeoTime, Tableau, and more. This experience will help with brainstorming of ideas for
authoring visualizations, as well as provide some background knowledge of what
interactions have already been well established. In addition, I have programmed some
preliminary gesture-based prototype interfaces over the second half of the summer, and I
hope to use this experience to help with programming the gesture parser and vocabulary
for this project. I have also programmed visualizations using Prefuse in the past. Because
protovis appears to follow many of the paradigms of Prefuse (but at a much higher level), I
hope to draw on my experience of programming with Prefuse in order to understand and
determine the most important visual encodings and parameter bindings to map to a
sketch-based interface.

Proposed Infovis Solution
This project will aim to create a sketch-based interface to protovis, an declarative
visualization toolkit. The goal will be to try and transfer some of the functionality of protovis
to this sketchy interface in order to give the user the feel of a sketch-based visualization
toolkit, allowing finer control of visualizations compared to Excel or Tableau, but be
significantly faster than coding alone.

Scenario of use
At this stage, the details of interaction will still need to be worked out. However, from
preliminary thought experiments it seems like the following may be a good estimation of
the general actions the user will go through in performing a task with this system:

Before the magic happens
The default interface will be a paper-napkin-like free-form canvas where people can write,
take notes, or perform doodles. Typical WIMP components will be kept at a minimum. In
this example, a student is contemplating building a new propeller design with her group,
but she remembers that she wants to look up some important information about the
physical stresses involved in this kind of system to make a point to her group. She
remembers that her professor provided a spreadsheet containing relevant information.

Trigger some sort of visualization authoring mode
The system needs to know that the ink being placed on the canvas is supposed to create a
visualization, and not just produce drawings. This can probably be done by drawing an
axis or a box indicating that a visualization is desired. In this example, the student quickly
draws an axis using 'active' ink. The system responds by identifying the potentially desired
active drawing (which will be limited to visualizations in this project), then asks for
confirmation.

Specify data to use
The visualizations will somehow need to access data. In order of increasing difficulty, this
can probably be done by either a file selector, typing in the filename, or writing the
filename, then drawing some confirmation mark or doing some confirmation interaction. In
this mock-up, the student draws a star beside the spreadsheet her professor provided
using active ink, and the system parses the columns of the file and provides active
representations that can later be used.

Specify type of mark to use
In protovis, visualizations are composed of cleverly formatted and arranged marks. This
system will be adopting that design paradigm. In order to reduce the scope of the project,
the marks will be limited to wedges or areas. In this picture we see the student draw a
wedge to indicate a visualization based on wedges.

Specify visual encoding:
The data that is imported can be linked to many visual encodings. Protovis provides a
general way to edit these encodings. For this project, a limited useful subset will need to
be identified, which can still provide functionality powerful drag-and-drop software such as
Tableau cannot provide, but can still be easy to code and reducible to 5 or less gestures to
remember. Example visual encodings are, but not limited to:

• Position – relative and absolute
• Anchors
• Angle
• Size
• etc.

In this example, the student encodes angle of a wedge to the dimension “force stress” on
the propeller joint, and specifies a filter to “less than” a threshold value she is interested in.

Enable visualization re-use
The visualization should then be available as an active widget that other data can be piped
into. In this case, if the student should receive other data to look at from another student
who has found a different source of data, she can then re-use the visualization to look at
the other student's new found data.

Caveat
Please keep in mind that the drawn mock-up is probably still ambitious for the scope of the
project, and things may be simplified further where the working area is split into a
visualization region and a drawing region, or the entire area may simply be for the
visualization authoring while other simpler means will be used to access the data in a file.
The best interactions that are feasible within the scope of this project must be taken into
consideration and implemented. And finally, data filtering may not even be a viable option
without the basics programmed.

Proposed implementation approach
The language this will be programmed in will be Java, as my preliminary thesis work is
done in this language, or Javascript, as protovis is implemented in Javascript. Thus due to
the nature of the languages being considered, this program will be platform independent.
This project will be built on top of the protovis toolkit, either directly (protovis will be added
to in order to permit pen interaction), or indirectly (pen interaction from an external
program will generate code to be executed with protovis). There are several milestones
that I can think of at this point. These will be further refined and added to by the end of the
coming weekend.

Milestones
There are several important milestones for this project

• Determine most important set of 5-10 visualization parameters to specify
• Determine if these parameters cover visualizations seen in class and in papers
• Determine robust but easy visual metaphor for how to link data to visual

encodings
• Determine easy-to-remember sketch language for encoding
• Learn how to port gesture work in thesis to Javascript, or learn how to link

protovis to Java programs/applets
• Make Javascript console + sketch interface for debugging and fine tuning
• Produce first milestone visualization – reproduce the example area and pie

charts, this will use a very basic gesture parser (smoke and mirrors)
• Create a parser for gestures, active ink objects, or both
• Program toy template scripts for different gestures recognized
• Program actual visual language
• Provide rudimentary visual feedback
• Allow visualization to be embedded in a free-form sketchpad (so it's a

visualization within a sketch, rather than a visualization alone)
• Satisfy minimum outcomes

The outcomes for this project are as follows
• Minimum outcomes

• Given imported data, produce a visualization in under 10 seconds
• Be able to quickly create the following

• Area graph
• Stacked area graph
• Layered area graph
• Pie chart
• Doughnut chart

• Target outcomes
• All minimum outcomes
• Allow basic interaction with visualizations if protovis allows them

• Zooming
• Rotation
• Panning
• Selection

• Be able to quickly create the following in addition to the minimum outcomes
• Exploded pie chart
• Nightingale's Rose
• Burtin's Antibiotics
• Horizon graph
• Theme River

• Extreme outcomes
• Discovered a common gesture/sketch language I can use for visualizations

(similar to how iLoveSketch had a common and very simple interaction
method to let the user draw a myriad of 3D drawings
• Preferably all the user will need to remember is 5 things, which can be

used for all visualizations
• Automatic placement of labels and rules, with adjustments using 'ticks'
• “More like this” or alternatives shown for ambiguous interpretations of drawn

commands
• Can input functions or dynamically create random data with desired

characteristics to test visualizations
• “Infinite canvas” layout, with appropriate slide transitions

Previous Work
There are several works that this project will be using for inspiration. On the animated
presentations front, [1] looks at how to create active animated objects controlled by a small
number of parameters (often just one) mapped to sliders. This paper shows a scripted,
parameter based language for creating visualizations, and maps this to physical
interactions appropriate for presentations. In addition, good animation guidelines for
presentations are discussed in this paper. There are several other important papers which
will be included in the final write up, however to save on time and because these have had
less of an impact to the creation of this proposal, I will instead skip to the most relevant
tools that have an impact on the design of this project, and will include these references in
the final write up.

There are several existing tools which are aimed at simplifying the production of
visualizations. Excel and similar spreadsheet programs take a wizard-based approach to
automatically generate visualizations based on predefined templates. Tableau [4] takes
this a step further and allows for quick visual encodings of data dimensions to
visualizations by drag and drop to predefined areas on the screen. At a more general pen-
based active animations level, programs designed for kids such as eToys [2] or Phun [3]
allow the creation of robots and simulations, which can often act as interesting
visualizations if constructed cleverly. The former acts as a visual programming language
while the latter is a pen-enabled physics simulation, both allowing for triggering of events,
enabling user directed timing if used in a presentation setting. At an even more general
level, several toolkits exist to allow for the prototyping of visualizations. Protovis [5]
provides a declarative Javascript toolkit which allows for a very rich set of visualizations to
be specified and programmed in minutes. Prefuse [6] and Flare [7] are equivalent toolkits
which allows users to specify data bindings, visual encodings, rendering, and control of
visualizations to enable production of a very wide variety of visualizations. Unfortunately,
the learning curve of Prefuse and Flare is very steep. Other toolkits with predefined
visualizations also exist, however some argue about the ease of extending these
visualizations [8, 9, 10]. Another flavour of toolkit is also available to the designer.
Processing [11] is another toolkit which lets designers focus on programming visual marks
without worrying about any complicated underlying programming structures (such as
initializing many abstract classes). Unlike protovis, this doesn't provide shortcut marks with
well defined anchors which can be bound to data or other marks, which leaves the logic of
certain visualizations such as stacked area graphs too difficult for the everyday user. From
this, tools become more general and more difficult to effectively design visualizations, such
as ActionScript, Flash, OpenGL, etc.

This project hopes to create something with a flexibility in between Tableau and Protovis.

References

[1] Zonker, D.E., and Salesin, D.H. (2003) On Creating Animated Presentations.
Eurographics/SIGGRAPH 2003

[2] eToys, www.squeakland.org (accessed on October 28, 2009)

[3] phun, www.phunland.com (accessed on October 28, 2009)

[4] Tableau, www.tableausoftware.com (accessed on October 28, 2009)

[5] Protovis, vis.stanford.edu/protovis/ (accessed on October 28, 2009)

[6] Prefuse, www.prefuse.org (accessed on October 28, 2009)

[7] Flare, flare.prefuse.org (accessed on October 28, 2009)

[8] Infovis toolkit, ivtk.sourceforge.net (accessed on October 28, 2009)

[9] Visualization toolkit, www.vtk.org (accessed on October 28, 2009)

[10] JavaScript Infovis Toolkit, thejit.org (accessed on October 28, 2009)

[11] Processing, processing.org (accessed on October 28, 2009)

