

napkin sketch visualizations
pen-centric improvisational visualizations

William O. Chao
December 2009

CPSC 533C final presentation

summary of this tool
● design paradigm (to find limitations/constraints)

● “if a napkin could let me quickly visualize then what
could I do on it, and how would I do it?”

● pen-centric (or touch-centric) front-end for
protovis

● intended for light-weight visualization authoring
● intended for creating quick visualizations “on-

the-fly”

image source: http://designmuseumshop.com/media/item/14141/472/graphkin-doodle-634.jpg

why visualize on a napkin?

motivation (covered previously)
● because doodling gets you thinking in a certain

way
● interaction feels fluid and free-form
● it's quick, sloppy, and fun!

● to build on previous work supporting rapidly
emerging technologies
● e-paper napkins?
● smart-boards, tables, phones?

● to see if it can even be done

for today's show...
● a quick demo (to introduce you to the system)
● some background information
● an in depth demonstration
● what I learned
● my wish-list
● concluding remarks

a very quick intro demo...

protovis in a single slide

new pv.Panel().anchor(“center”).add(pv.Wedge)
.data(myData).innerRadius(10).outerRadius(50).angle(function()
..... [lots of code]
.render();

image source: Bostock and Heer (2009)

elements of this project

(screenshot)

elements of this project - summary
● strokes
● proto-objects
● files / external data
● single-mark visualizations
● compound visualizations

detailed demonstration...

strokes
● free-form inking
● rendered in several layers

● speed considerations when refreshing
● in certain conditions, interpreted as special

things such as
● links
● gestures

proto-objects*
● closed strokes
● can be transformed to other objects

● by gestures

a tribute to Ron Rensink's “proto-object flux”, a reference to “proto” in protovis, as well as labelling those
unformed objects as prototypes

*

file openers
● opens files

● a work-around to accommodate some of the
limitations I ran into in Javascript

● use to select data files
● selected files are loaded and automatically

parsed
● data is then represented visually

data objects
● visually represents the different columns in the

parsed data
● can see an overview of the data
● can link data dimensions to visualizations

single-mark visualizations
● use to select mark (bar, dot, area, wedge)
● can quickly see 'shape' of data
● will later be used to fine-tune more specific

attributes

compound visualizations
● used to combine marks
● intended as a place to compare different

dimensions of data
● partitioned for easy selection of mark anchors in

scene graph
● direction of entry determines orientation of mark

layout

what I learned
● learned Javascript, CSS, <canvas>, SVG,

protovis, <div>, and so much more!
● discovered a feasible work-flow for quick pen-

centric (and touch-centric) visualization
authoring!
● plan on continuing to see where the 'walls' are

● discovered that web programming should not
be first choice for proof-of-concept programs
● too many limitations and permissions issues

what I learned – an example

one reason for web programming limitations, a
sample from an internet forum...

“I have a bunch of banners on my website, how do
I make it seem like the user has clicked them all?”

-Anonymous web developer

known limitations (few of many!)
● visualizations have value-scaling issues
● lack of labelling
● methodology might not be scalable to more

than dozens of marks
● many anchors and attributes not considered
● very basic functionality such as “undo” left

unimplemented
● filter and zooming non-existent in interface (and

limited in libraries)

reason for intentional limitations
● time constraints
● triaging

● find best “bang-for-
the-buck”: anchors

● scope of project
● (not mouthwash)

● (well, maybe a bit)

– (actually, no.)

my wish-list (given more time)
● explore other mark

attributes
● explore more marks
● control data value

scaling better
● utilize standard layouts
● use sloppy equations
● add data filtering
● write a paper worthy of

Vis! (hopefully)

re-cap
● implemented a proof-of-concept, web-based,

pen-centric visualization application
● front-end for some of protovis's capabilities

● worked-out a work-flow to create a variety of
visualizations in the process
● fast enough for thinking on-the-fly (like while

drawing on paper napkins)
● outlined possible future directions

thank you!

questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

