
SDAT a Visual Source Comparison Tool

Rolf Biehn

University of British Columbia

 ABSTRACT

This paper discusses a new technique to compare software
programs and a new pixel map widget. By using an Abstract
Syntax Tree to structurally compare two files or programs, many
advantages can be realized such as better visualization, multiple
language support and a reduction in the noise (such as a
renamed method or variable). This paper discusses some of the
issues of implementation of this approach and some of the
solutions so far. In this paper I introduce a new widget for
scalable and fully interactive pixel maps, called the “Mini-Map
Scroller” that also supports orthogonal zooming and
demonstrate how it can be used in the context of Source
Comparison Utility.

KEYWORDS: Software Comparison, Pixel Map

1 INTRODUCTION

Software developers are often faced with the task of

comparing two or more software versions. Typical usages of

software comparison utilities include: A code-review prior to

check-in, tracking down a recently introduced regression, and

searching for code-clones in the source code (for future

refactoring). SDAT (“The Source Difference Analyzing Tool”)

aims to assist users with comparing two separate, but similar

programs together or two similar source files together.

SDAT will use an Abstract Syntax Tree(AST) and compare

the input sources structurally. Many advantages can be realized

over traditional comparison utilities by doing this. Some of the

advantages include:

• Reduced noise (for example, renamed variables or re-

ordered methods can be safely ignored during

comparison)

• Cross-language comparisons become possible (such as

C# to JAVA -- for companies which support programs

written in multiple languages.)

• Better visualizations (such as syntax highlighting,

special visualizations for different types of AST

nodes, an over-view of precisely which files have

changed structurally, etc...)

• Better user interaction (such as searching for a

method by name, “jumping” to another method from

one method call statement, filtering unwanted

information, etc..)

I have implemented an algorithm for transforming JAVA ML

(an XML AST representation) to an in memory AST model. I

have also completed a very basic comparison algorithm. In this

paper I will briefly describe these steps, introduce the Mini-Map

Scroller(A pixel map widget capable of orthogonal zooming and

direct user interaction) and 2 component views of SDAT that

specialize in visualizing the difference between two given

methods in AST form.

2 RELATED WORK

Numerous source comparison programs exist such as Beyond

Compare, KDiff, and WinMerge. However, the comparison

algorithms for these programs only consider simple heuristics

such as ignoring comments and ignoring white space, and do not

use an AST to compare the source files. Several programs for

XML comparison exist such as HTMLDiff, Araxis Merge and

Guiffy. However, these programs are not aware of the Source

Code format and therefore may introduce extraneous results

(such as comments or renamed variables). All of the utilities

mentioned in this paragraph only allow for one file to be

compared at a time, and lack easy inter-class navigation

abilities.

 The problem of source code comparison was briefly

addressed by Chevalier et. al[4]. Munzner et. al[5], Bauman et.

al.[6], and Holten and Wijk[7] explored issues regarding tree

comparison visualizations. Several programs are available for

visualizing source code such as Relief (which uses a radial gliff

system) and aiCall (which uses flow-charts). Both Voinea et.

al[8] and Jones et. al. [9] used pixel maps to indicate areas of

interest in source code files. However, pixel one line cannot

represent more than one document line and therefore multiple or

large display maps are required in order to represent large sets of

data. Appert and Fekete[10] introduced the idea of orthogonal

zooming. I wish to extend this idea towards pixel-maps.

3 IMPLEMENTATION

3.1 Overview

The AST process can be divided into 5 distinct phases. The

source files are first transformed into an AST model. After

which, an analysis phase is conducted. In this phase, the

mappings are determined automatically (for example, class X

maps to classy Y, method X maps to method Y) and then a

comparison is conducted. These results are sent to a

Visualization program. The next stage is user interaction;

however this phase is out of scope for this project.

Figure 1 The 5 stages of AST Comparison

3.2 AST Phase

In the AST Phase, I used JAVA ML[1] to translate java

source files into an XML model. This XML model is then

translated to my own AST object model by using the JDOM[2]

library. I chose two functions from 2 consecutive revisions in

SWT’s[11] Control class to be used as the data-set. The entire

process is described in Figure 1

3.2.1 Discussion

Several Obstacles were discovered in this phase. JAVA ML

does not support JAVA 5 and above nor does it store the symbol

table information(required for the mapping sub-phase and the

User Interaction later on). JAVA ML does not use an XML

serializer; therefore it does not escape characters such as

apostrophes and angled brackets. I resolved these issues by

manual data manipulations. Several JAVA ML nodes have

attributes such as “methodName”, “className” &

“variableName”. I changed these attributes to “name” to

support greater abstraction. I propose that JAVA ML adopts

this standard in the next release.

 I learned that the memory requirements for an XML

representation are considerable. 5,000 lines of code require

800KB of memory. Of course this large memory consumption

makes sense when I consider all of the duplication of node and

attribute names text in the XML representation and also a textual

representation of an integer will always require more bytes than

its binary counter-part. My original design involved creating

wrapper classes for each of these XML nodes and keeping the

XML nodes in memory, however this has proven to be

infeasible.

3.2.2 Conclusion

The ability to serialize the object model for debugging is

desirable; however, XML as the primary object model is

impractical. In future, I will use a binary representation of the

AST Model as the primary output of this phase, with the ability

to serialize / deserializer to XML for debugging purposes.

3.3 Comparison

In this phase meta-data is added to the AST node model to

indicate differences and missing nodes. The process is

described in more detail in Appendix A Figures A1 to A3.

3.3.1 Discussion

I originally attempted using several open source libraries for

java for xml comparison, however I was unable to find a library

that met my requirements and would be easy to learn in a

relatively short period of time. Therefore, I wrote my own

comparison algorithm it is very simplistic. It can only compare

nodes that exist in the same block-level. The comparison

algorithm will start with a node on the “left” tree. (lets call it

L(1)). It will look at the corresponding statement to the right

(call it R(1)). If L(1) and R(1) are an exact match, we move to

the next statement on each side (L(2) and R(2)).If a node with

the same AST type is found, it is considered to be a similar

node. If one of the attributes or children are missing or

incorrect, they are marked as such. The algorithm then

continues to L(2) and R(2). If L(1)’s AST node type cannot be

matched to R(2)’s node type, the algorithm will look ahead up to

20 lines (arbitrary number) on the right hand side in order to

find the next exact matching AST node (in the same block). If

an exact matching node, (call it RX) can be found then R(1)-

>R(X-1) are marked as missing. Afterwards, the algorithm

continues at L(2) and R(X + 1). On the other hand, if it cannot

be found on the right hand side, the left side is searched for an

exact match to R(1) up to 20 lines. If a matching L(X) can be

found, then L(1)->L(X-1) nodes are marked as missing and the

algorithm continues at L(X +1) and R(2). If neither of these

conditions are met, L(1) and R(1) are both marked as missing

and the algorithm continues at L(2) and R(2).

3.3.2 Conclusion

Clearly this approach in inadequate, however, time constraints

prevented a better implementation. In future versions, I intend

to investigate existing techniques for text and XML comparison

as well as specific software program comparison heuristics and

generalities in comparison.

3.4 Visualizations

A program can be thought of as a very strict hierarchy of

nodes, each of which contains properties on every hierarchical

level. For example the class-level hierarchy contains properties

regarding member variables, class name, visibility, etc… I have

simplified this hierarchy for visualization purposes because I do

not think that most developers care about the level of detail after

statement. (See Appendix A Figure A4: for a description of all

the levels). The high level plan for SDAT is to create multiple

views of this tree which specialize in viewing specific levels.

However, for this project only the method level and below will

be considered.

The visualization of this project is composed of 3 major

components, pictured in (Appdenix A Figure A5). The Method

View specializes in showing the differences of method using a

tree widget, the Mini-Map Scroller is used as an over-view in

this view and the Detailed View is useful for showing more

detailed information for statement differences. The initial

implementation has been programmed using JAVA Swing.

JAVA was chosen because it has a flexible library for

performing tree operations (known as a JTree in JAVA) and it is

cross-platform.

3.4.1 Model Adaptation

Before any visualization can occur, the AST model must be

adapted into something more suitable for a visualization for

developers. As an example, the statement “mName(arg1)” has

several children in the AST model. Clearly multiple child for

this statement is not a desirable visualization. In order to

visualize a statement, each node supports an ability to flatten

itself into a stream of tokens (also including tokens for meta data

information). This is also the data that gets sent to the Detailed

View.

Another example of adaptation occurs for the “if statement”.

An if statement has 3 possible children in the AST model (a

condition, a statement clause, and optionally, an else clause), but

clearly it is desirable to have a model that resembles how a

programmer would write this statement. (i.e. with the “if

keyword”, the condition statement on the same line and the

statement clause and else clause as children of this node).

3.4.1.1 Discussion

Unfortunately, using ASTs for visualization of a statement

suffers from several draw backs. For starters, the user’s original

code formatting is not shown. (Ideally an option to allow the

user to format the code how they please could be supported.) In

addition, if the statement is extremely long-- spanning several

lines-- it will be shown all on one line. Most troublingly; user

comments are completely lost in this process. However, the

AST representation may be more appropriate for comparing

cross-language comparisons where the difference in language

syntax may make it difficult for the user to recognize the

differences. I will re-analyze this approach in the future and

perhaps just show the original text of the statement from the

original source file. The AST generation logic must be

improved to maintain character indexes and comments in this

case.

3.4.1 Mini-Map Scroller

Figure 2 : Basic mini-map scroller

The Mini-Map Scroller is designed to work with any

document with a concept of lines and markers. Markers are user

objects consisting of a colour and a line number. It is

recommended, but not required, that these colours match the

same colours used in the document. In practice the Method

View uses a Tree structure as a document. The required

interface for a component to use the Mini-Map can be found in

Appendix A. The image at Figure 2 explains the basic

interaction mechanics of the Mini-Map.

2.1.1.1 The Pop-up Viewer

Figure 3 – the Pop-up Viewer

After clicking the view pop-up button the user is presented

with the view pop-up box (pictured in Figure 3). This pop-up

box will remain visible until the user clicks on the pop-up button

again. (I will implement a close button in the next version).

The pop-up view also serves as a simple visualization of the

user’s current view via the sliders. The Anchor Line is the first

line displayed in the Mini-Map. The map length refers to how

many lines the Mini-Map should show at a time and the current

line refers to the top line of the document view. All of these

values can be inputted directly into the text boxes or via the

sliders. I changed the slider UI to respond to a single click

gesture (i.e. click on the knob, move the mouse left to right, and

then click again to commit the value). I hope that this new

gesture makes it easier on the user to select certain areas because

no drag clicking is required. I postulate that drag clicking, makes

it more difficult to move the mouse due to the additional muscle

control required. The anchor line will update automatically if

the Mini-Map determines that it cannot fit the current line into

the current map view. The layout of the pop-up widget is east to

west. I considered laying out the sliders north to south (for a

more intuitive user experience), however this approach would

cause a much larger number of lines to be obscured by this pop-

up and such a layout may be counter-intuitive when using the

orthogonal zooming feature.

3.4.2.1 Mini-Map Scalability – Display Region

The Mini-Map Scroller allows for display scalability by using

several different techniques. It is able to give an overview for

an arbitrary size of document. If the user specifies a map length

that is currently less than available height for the Mini-Map area

then it is clear that we can visualize the markers by lines with a

height of floor((map size) / (Mini-Map height)). When the map

size exceeds the height of the Mini-Map height, a percentage of

the width is used to represent a region in the original document.

In this case, the number of occurrences of a marker colour in a

region are counted and the percentage of the total of the number

of lines in the region determines how much width is allocated to

that colour. Each unique marker colour is guaranteed a

minimum of one pixel width, while the remaining width is

divided up evenly, according to the percentages, between

markers and non markers. Obviously it is only necessary to

traverse the current markers to determine this information,

making this algorithm run in O(M) where M is the number of

markers.

The greater the width, the more expressive the line can be.

Conversely, as the width becomes smaller, expressive

capabilities are lost. Care should be taken by the developer to

not encounter a situation in which the number of possible

The area between the up and down arrows is

called the Mini-Map area. Lines are used to

indicate markers in the original document. Left

clicking anywhere in this area brings the user to the

corresponding line in the document.

An orange box is used to indicate the user’s display

region of the original document (Always a

minimum height of 3 pixels. Also, when some of

the user’s display region is not visible in the map,

the bottom of this box is not drawn.

Button to open the view pop-up

Move Up / Down one Mini-Map length

markers exceeds the width of the Mini-Map. It is entirely

possible to allow the user to dynamically resize the Mini-Map as

no calculations are done using hard-coded values.

When the height is less than the map size, the scroller(i.e. the

orange box) will be at its minimum height of 3 pixels. This

would be rather difficult to click and drag using the tradition

scroll-bar interface. Therefore, a new interaction mechanism

has been introduced. The user is able to engage a “locked

mode” by right clicking anywhere in the Mini-Map area. After

right clicking, the user’s mouse pointer is changed to a hand and

immediately moved to the top of the scroller. In this mode, the

user is prevented from moving left to right, but they can still

move up and down and click on the up and down arrows. While

the user moves the mouse, the current view (and slider) is

updated. Rotating the mouse wheel up and down will move to

the previous and next marker respectively. Left clicking in the

scroll area will return the user to normal mode. If the user right

clicks while in the locked mode, the user is transformed into

“resize mode” (indicated by the mouse cursor changing to the

east-to-west resize cursor). While in resize mode, the user can

move the mouse left to right to change the map length.

However, this interaction performs as a linear scale making it

quite tedious to change size of the map. Right clicking again

from the resize mode returns the user to locked mode. Left

clicking in the Mini-Map scroll area from the resize mode

returns the user to the normal mode. (The locked and resize

modes are also available when the map size is less than the

Mini-Map height).

3.4.2.2 Mini-Map Scalability – Performance

of Nodes # of

Markers

Expand(ms) Marker

Calc.(ms)

Rendering

Time (ms)

10,000 2383 243 16 < 50

50,000 11646 460 134 < 50

100,000 23,251 1912 499 < 50

200,000 46338 4554 2187 < 50

Figure 4 – Mini-Map performance results

Figure 4 illustrates the results from my stress-testing runs of

the Mini-Map. The “Expand” column refers to the time it takes

for a node to completely expand after clicking the expansion

icon. This time includes the time it takes to re-calculate the

markers and for Java to perform a JTree expansion. The

“Marker Calc.” column is the time it takes to solely recalculate

the lines for all of the markers and the “Rendering” column is

the time is the time it takes to render a Mini-Map that uses all of

the lines once the markers have been calculated. The stress

testing machine was a Dual Core 2.8GHz Athlon computer with

2 gigs of RAM running Windows Vista. The data was created at

random and used in a single view of the Method View. Ten

independent trials were run and the average of these trials was

displayed.

The recalculation of markers appears to be the biggest bottle

neck for performance. The underlying reason for this is every

marker must be visited in order to update its line number, and in

order to determine its new number, it must look itself up in the

tree (for an average of M*log(n) per recalculation where M is

the number of markers and n is the number of nodes). Perceived

performance could be increased by running the calculation in a

background thread once the JTree has collapsed (perhaps

showing a calculating animation in the Mini-Map itself) It

should be possible, under certain situations, to specify markers

as blocks (i.e. lines 5 to 50 are blue) thereby reducing the

number of marker re-calculations needed. It is also possible to

make the Mini-Map Scroller only request the markers needed

for the current rendering therefore potentially differing the need

to re-calculate certain markers. . These approaches have not

been implemented in the current version, but are possible in

future versions.

3.4.2.3 Mini-Map Scroller Discussion

 I asked a group of 3 of my computer programmer colleges to

try the Mini-Map scroller. All 3 of them described it as being

easy to use, once the interaction mechanisms were understood

(although they were all unable to discover the resize & locked

mode on their own). In future, to address this problem, I will

experiment with a tool-tip like overlay on the Mini-Map that

says “Try right clicking me”. Once the user interacts with the

Mini-Map or after a set amount of time, this overlay will

disappear. My colleges did not find the resize mode to be

useful.

 I believe every scrolling-widget should adopt the “locked

mode” behaviour as it offers some advantages over the

traditional scrolling widget such as being easier to click when

the scroller is very small and less stress on the hand. The Mini-

Map provides an adjustable over-view of all the changes. Future

enhancements include further optimization, a check-box to

specify that the user wishes to see the entire map at all times and

a more rigorous SDK available for public consumption.

3.5 Method View

My original idea for method visualization was to use two

side-by-side flow-chart representations of the AST model and

colouring nodes that are different. However, I now believe this

to be an incorrect approach for two reasons. #1) A statement

bound visualization would be closer to a developer’s day-to-day

mental model of the code and #2) this approach does not take

advantage of position particularly well, which is one of the most

import aspects of visualizations. Two views are placed side-by-

side. Each view has a tree to visualize statements and a Mini-

Map to explore the tree. Blocks of statements can be collapsed

and expanded at will. Nodes that are different are highlighted in

a soft red, missing nodes (also known as orphan nodes) are

highlighted with a soft blue and nodes with collapsed children

with markers are highlighted with purple. The colour scheme

was verified as appropriate for colour-blind people by using

VizCheck[3]. When a node is collapsed or expanded, all of the

subsequent marker locations can change. It is important to not

traverse the entire tree structure in this case. The algorithm

avoids this by maintaining a list of all markers in the document

(via the full tree path) and updating a cached version with the

correct line numbers when appropriate. (It’s only necessary to

update lines that are greater than or equal to the node being

expanded or collapsed). The Method View also supports

synchronized scrolling and synchronized selection.

3.5. 1 Discussion

I’m not completely sold on the value of two Mini-Maps. One

Mini-Map may be more appropriate. Also it may be more

appropriate to have this map to the left instead of in the middle.

(so it is less obtrusive),

3.6 Detailed View

The Detailed View is used for a more detailed, line by line

comparison. It is important to support this view because some

of the statements may exceed 80 characters and will be very

difficult to see in the non-full width Method View pane. The

Detailed View reacts to the active selection in the Method View

via a SelectionService. (I have implemented that myself, similar

to Eclipse’s selection mechanisms.) The input to the Detailed

View is a stream of tokens generated from the AST Model. The

implication for this is that the highlighting will be slightly

different than a pure textual comparison. For example, a textual

comparison is likely to regard the “bounds.left” text and

“bounds[1]” as being different only after the s of bounds, but an

AST comparison considers these different because an index

reference is a different type of AST node than a regular variable

reference (although this behaviour could be changed).

The long term plan for this view is that it provids detail for

any active view and active selection.

3.7 Visualization Limitations

Currently the only way to invoke the views is via command

line arguments. In the future, I hope to provide an outline tree

widget view which contains the hierarchy of the packages and

classes. The user will be able to use this outline view to drill

further into the differences. Also I am using JDesktops so the

user is free to resize anything they like. In future, I’d like to

implement this as an Eclipse RCP app to allow pre-defined

views and a better work-bench like experience for the user.

4 USER SCENARIOS

A regression has been discovered and assigned to a

developer. The current source code is compared to a previous

version where the regression does not exist. The developer is

familiar with program so uses an outline view to target suspect

areas of changes. The method view is used for more details on

differences in the methods and the problematic check-in is

discovered.

 A user wishes to review his changes before checking

them into source control; therefore they wish to see all of the

differences prior to checking in the code. The user navigates

every difference by using the next difference navigation,

confirming the changes made.

5 CONCLUSION

I have discussed and implemented a method to visualize

differences for methods from an AST comparison. I suggested

several different areas for further investigation and

improvement. I have created a new widget capable of

displaying pixel maps at arbitrary, user controlled resolutions.

At the current time, my system does not fully utilize the power

of the AST Model, however a lot of potential exists with this

approach and the first required stages for this have now been

completed.

6 FUTURE WORK

Many areas that are needed to create a complete software

comparison program have been left untouched in this project. In

the future, we must support more AST nodes from multiple

languages, a better, more rigorous comparison algorithms, the

ability to compare and visualize classes, packages, etc.; and of

course more user interaction (such as filters, go to, multiple

views, a navigation pane and navigation history, changing the

link mapping, etc…) Some interesting tangents for further

investigation include: Creating the AST from a binary, other

applications for the Mini-Map Scroller and user studies.

7

7 REFERENCES

[1] Greg J. Badros. JAVA ML : An XML-based Source Code

Representation for Java Programs. [Online]

http://www.badros.com/greg/JavaML/.

[2] JDOM: http://www.jdom.org/
[3] VizCheck: http://www.vischeck.com/

[4] Fanny Chevalier, David Auber, Alexandru Telea. Structural

Analysis and Visualization of C++ Code Evolution using Syntax
Trees. 9th International Workshop on Principles of Software

Evolution (IWPSE 2007).

[5] Tamara Munzner, Franc¸ois Guimbreti`ere_ Serdar
 Tasiran__ Li Zhang_ Yunhong Zhou. TreeJuxtaposer:

 Scalable Visibility. SIGGRAPH 2003, published as ACM

 Transactions on Graphics 22(3), pages 453--462, 2003.
[6] Shannon Bauman, James Clawson, Josh Cothran, Jeanie

 Miskelly, Zach Pousman. Treefoil: Visualization and Pair

 Wise Comparison of File System Trees.
[7] Danny Holten and Jarke J. van Wijk. Visual Comparison of

 Hierarchically Organized Data. 10th Eurographics/IEEE-

 VGTC Symposium on Visualization (Computer Graphics
 Forum; Proceedings of EuroVis 2008), Pages 759 - 766,

 2008.

[8] Lucian Voinea, Alex Telea and Jarke J. van Wijk.
Evolution, CVSscan: Visualization of Code. Proceedings of the

ACM 2005 Symposium on Software Visualization, St. Louis, Missouri,

USA, May 14-15, 2005 2005.
[9] James A. Jones, Mary Jean Harrold, and John T. Stasko.

 Visualization for Fault Localization. Software Engineering, 2004.

ICSE 2004. Proceedings. 26th International Conference pages 54- 56.

[10] Catherine Appert and Jean-Daniel Fekete. OrthoZoom Scroller:

1D Multi-Scale Navigation.. Proc. SIGCHI 06, pp 21-30.

[11] SWT: The Standard Widget Kit: http://www.eclipse.org/swt/

APPENDIX A

public interface IMarker {

/**

 * @return the Color of the Marker

 */

public Color getMarkerColor();

/**

 * @return the Line number of the marker

 */

public int getLine();

}

public interface IMinimapAdapter {

 /**

 * @return a list of all the markers in the document. These markers must be

 * ascending in sorted order.

 */

 public List<IMarker> getMarkers();

 /**

 * Ensures that lineNum is visible

 *

 * @param lineNum

 */

 public void goTo(int lineNum);

 /**

 * Returns the total number of lines in the documents

 */

 public int getTotalLines();

 /**

 * @return the first visible line of the document

 */

 public int getFirstVisibleLine();

 /**

 * @return the last visible line of the document

 */

 public int getLastVisibleLine();

 /**

 * @return The JAVA component used to render the view of the document. This

 * is typically a JViewport or a JScrollPane.

 */

 public Component getComponent();

}

Figure A1 – the original two inputs.

Figure A2 –The results after the JAVA ML AST generation

Figure A3 –The results after the injection of meta data.

public static void print() {

 System.out.println("Hello World!");

}

public static void print() {

 System.out.println("Hello Universe!");

<method name="print" visibility="public" static="true">

 <type name="void" primitive="true"/>

 <formal-arguments/>

 <block>

 <functionCall="println">

 <target>

 <field-access field="out">

 <var-ref name="System"/>

 </field-access>

 </target>

 <arguments>

 <literal-string value=""Hello World!""/>

 </arguments>

 </functionCall>

 </block>

</method>

<method name="print" visibility="public" static="true">

 <type name="void" primitive="true"/>

 <formal-arguments/>

 <block>

 <functionCall="println">

 <target>

 <field-access field="out">

 <var-ref name="System"/>

 </field-access>

 </target>

 <arguments>

 <literal-string value=""Hello World!“”>

 <meta value=“diff”/>

 </literal-string value>

 </arguments>

 </functionCall>

 </block>

</method>

Figure A4 –The simplified hierarchy of a program.

Figure A5 –The three major components of the Visualization

