
Visualizing SLS Runtime Behaviour
James Styles∗

Department of Computer Science
University of British Columbia

1 INTRODUCTION

1.1 Overview of SLS
Stochastic Local Searches (SLS) are a class of meta-heuristics for
solving hard combinatorial optimization problems. Common exam-
ples of such problems are satisfiability (SAT), travelling salesman
problem (TSP), job shop problem (JSP) and vehicle routing prob-
lem (VRP). The set of all possible solutions to one of these prob-
lems is called the search space. Each point (solution) in the search
space is associated with some measure of fitness or objective.

The idea behind local search is that some initial point in the
search space is chosen as a starting point. From this point, and
all future ones, we define a neighbourhood. A neighbourhood for a
point is the set of all solutions which can be constructed by modi-
fying the current solution in some well defined way. This modifica-
tion is typically very small; such as swapping a single assignment
for SAT. A point from the neighbourhood is chosen to become the
new solution. This process is repeated for some number of itera-
tions until either a solution of sufficiently good quality is located, a
time bound is met, or some measure of stagnation is reached.

The key parts of an SLS algorithm are then: (1) how to choose
the initial position, (2) how to define the neighbourhood for a given
point, (3) how to decide which point within a neighbourhood to
choose, (4) when to decide that the search should terminate. For
a concrete example we can construct a very simple SAT solver:
(1) an initial solution is chosen by generating a random assignment
for each variable, (2) the neighbourhood for each point contains
every solution that can be obtained by changing a single variable
assignment, (3) the neighbour with the fewest violated clauses is
chosen, (4) the search terminates when no neighbours can be found
with fewer violated clauses than the current solution. This is an
example of a simple gradient decent (or hill climbing) search.

This simple solver for SAT should help to illustrate a key point
about SLS. There is no guarantee that a SLS method will find an
optimal solution. There isn’t even a guarantee that an SLS method
can find a feasible solution! This means that SLS algorithms are
incomplete. So why use them? Well, they’re fast. Very fast. And in
practice a ”good” solution found today is often more desirable than
a perfect solution found next year.

1.2 The Task
A substantial portion of the effort in the development of SLS algo-
rithms is spent analyzing and tuning their performance. This anal-
ysis task is made difficult due to the extremely high dimensionality
of the search space which can thousands of variables and due to the
complexity of the algorithms. There are two approaches that can be
taken to reduce this effort: (1) provide/improve tools used for the
analysis (2) create automatic methods for tuning. The focus of this
project is the former.

There is a lot of information about an SLS algorithm that can be
recorded as it explores a search space. This includes both general
information such as:

∗e-mail: jatyles@cs.ubc.ca

• solution quality at each iteration

• solution at each iteration

• time taken for each iteration

• solutions contained in the neighbourhood at each iteration

• switches between intensification and diversification phases

and information very specific to a particular SLS approach, such as:

• tabu tenure / contents of tabu lists

• contents of no-good caches

• justifications for switching neighbourhoods (portfolio based
searches)

The instrumentation necessary to extract this information from
a local search can add substantial overhead and care must be taken
to ensure any timing information recorded is describing the search
and not the instrumentation.

There is also a great deal of information about a searches be-
haviour that can only be determined offline. This includes both in-
formation that is can be made available at runtime but is just incon-
venient to record and information that is impossible to determine at
runtime such as aggregate performance or similarity to elite solu-
tions / local optima over time.

The goal of this project is to provide a framework to support the
interactive visual analysis of this data. From personal experience
this kind of analysis is often very opportunistic. It is unlikely that
any single display could be useful for all aspects of an analysis task.
This means that the framework must be flexible and the choice and
layout of displays must be driven by the current needs of the user.
There are three main components that must be considered in any
potential solution: (1) a means of managing a collection of data
sets, (2) a means of supporting the computation of derived values,
(3) a means of visualizing the collected information.

The remainder of this report is as follows: section 2 discusses
related work, section 3 discusses the overall interface for the tool,
section 4 discusses the method for organizing data sets, section 5
discusses the facility for supporting derived values, section 6 dis-
cusses the time series display, section 7 discusses future work.

2 RELATED WORK

[2] introduces a visualization for comparing the performance of
solves on problems with multiple-objectives. The tool provided
allows for the comparison of the overall performance of two al-
gorithms where neither one dominates the other. The displays gen-
erated highlight areas on a pareto front which each algorithms out-
performs the others. This provides a great high level view of the
performance difference between two algorithms but can’t be used
by itself to analyze either. However these kinds of high level views
are certainly important to provide initial insight and guidance for
future analysis.

[1] introduces a set of visualizations for analyzing the runtime
behaviour of an SLS algorithm based on comparisons between the
current solution and a set of elite solutions using distance, fitness



and recency as the basis of comparison. There method is particu-
larly well suited for tabu based search strategies as the elite solu-
tions can be the contents of the tabu list. They provide an example
of using these displays to provide insight into how to improve the
performance of a particular algorithm. This is a good example of
a display for analysing the performance of an individual run of an
algorithm.

[3] focuses on how to visualize the search space explored by an
SLS algorithm. The main contribution is an embedding of high-
dimensional search space into 2D height map. The resulting im-
ages are very similar to what is produced by in-spire’s information
landscapes. While this provides good insight into the extent of ex-
ploration performed it does not provide information on how it was
explored.

[4] is the only piece of work I’ve been able to find which attempts
to introduce a full suite of visualization tools to support analysing
SLS behaviour. One of the main ideas behind the layout of their
suite is that the ability of an individual to use multiple displays de-
grades as the information density in each display increases. To this
end the focus of their suite is a display for analyzing the exploration
of the search space. Similar to the previous paper this display fo-
cuses on a way of embedding a high dimensional space into a 2D
space. They provide auxiliary displays for other metrics such as
fitness over time, current solution, and fitness-distance correlations.

This seems like an excellent visualization suite and had it been
open source I probably would have focused on extending it rather
than building a system from scratch.

3 OVERALL DESIGN

One of the main goals of this visualization tool is to be as flexible
as possible. This is to encourage the opportunistic exploration and
analysis of the information recorded from the SLS runs. This of
course comes at a cost; increased flexibility means increased time
taken by the user to generate displays. The alternative is a more
rigid system with a prebuilt layout and set of supported tasks. While
this has the potential to time investment it limits what can be done.
I’m unclear as to the full implications of this trade-off and unfortu-
nately have not had time to do proper user testing. I may eventually
revisit this in favour of a more focused/rigid system such as time
searcher or viz.

A secondary design goal that arose during the early development
of this system results from the observation that dialogs can be jar-
ring. This problem becomes even more prominent as the complex-
ity of the dialogues increases. This has lead to the design goal of
trying to use as few dialogues as possible. With the only true dia-
logue left being a colour picker for the displays.

The real implication of this design decision is the impact on the
flow of data throughout the system. The idea is that every piece of
data has a visual handle in the system. All data movement is done
by moving dragging and dropping. This includes all data import,
export and manipulation within the system. This has some nice
advantages; for instance to import a set of data you just drag it from
some file manager onto the application and similarly data export
is handled by dragging from the application onto a file manager.
However just like with the flexibility this comes with a price. There
is substantially more mouse movement required to perform a task
than would be required with dialogues. There is also the issue of
ambiguity about what a particular action means. And just like with
the flexibility goal I’m not sure whether this tradeoff is worth it yet.

Before starting into the individual components a comment about
the implementation. The entire system is implemented in Java using
the graphics2D and swing frameworks. I made the decision to forgo
using other libraries to implement features of the system to have
more control over how the system behaved. (Although the fact that
I have an unfortunate tendency to enjoying reinventing the wheel
probably contributed to this decision).

See figure 1 for for what the complete application looks like.

4 DATA MANAGEMENT

4.1 Motivation
There’s the immediate question of why is it important for this ap-
plication to be concerned with any kind of data management? What
it comes down to is the sheer volume of data that can be generated
for analyzing SLS behaviour. To illustrate this I’ll give an example
of something I’m currently working on. I’ve been trying to tune
Keld Helsgaun’s implementation of LKH. This is the state of the
art incomplete algorithm for solving TSP. As part of the tuning pro-
cess I generated 10 promising variants on the default parameter set
proposed by Keld. Each parameter set (including the default one)
was evaluated by running it on a set of 112 instances from TSPLIB.
Since this is a stochastic algorithm it is important to run it multi-
ple times on each instance to get a better feel for the expect and
worst case performance. To achieve this each instance was run 15
times per parameter set. This means that for a single recorded at-
tribute there are 18480 data sets that will be involved in the analysis
process.

When this many data sets can be involved data management now
becomes issue. One thing to note is that while there may be several
thousand data sets involved with an analysis process an individual
task many only require a few dozen or even just a single data set.
Furthermore the user knows which data sets they want to look at for
a particular task. The goal for this component of the system is then
to provide the means of quickly organizing and searching through
the data sets so that interesting items can be quickly and efficiently
grouped and selected.

4.2 Tags and Trees
In this application every data set is associated with a set of tags /
annotations. Each tag is a ¡name, value¿ pair which describe some
aspect of a data set. It is assumed that total ordering is available for
tag values. For instance a certain run of a solver could be described
using the: (1) the name of the solver, (2) the instance being solved,
(3) the id of the run, (4) the measurement being recorded ,and (5)
the computer the run was done on. There is no requirement that
every item use the same set of tags. The key thing to note is that
the user has created these tags. This means that they should all be
meaningful and intuitive to the user.

We can now use these tags to organize the collection of data sets
into a tree. Each level in the tree corresponds to a particular tag.
The children of any node are sorted according to value using the
total ordering which was assumed to be available. Since the tags
are all meaningful to the user and they know which data sets they
are interested in this solves the issue of locating data sets within the
collection. However this doesn’t solve the issue of grouping and
selecting them.

When find a group of data sets to use we observe two extremes:
all the desired data sets are very near each other in the tree, or all
the desire data sets are spread throughout the tree. Whenever the
latter case is encountered it would become a source of frustration
to the user. The users’ experience now depends entirely on how
we decided to layout the tree. But this layout isn’t arbitrary. Its
determined entirely by the order in which we consider tags. The
solution is then to allow the user to have explicit control over the
ordering of the tags. This leaves one remaining question, will it be
generally be possible for a user to find an ordering which makes
their task easy? And how difficult will it be for them to find this
order?

From my experience the answer to these questions are (1) Yes,
and (2) Very easy. This comes back to the idea that the tags are all
meaningful and intuitive ways of describing data sets to the user.
For instance consider the set of 5 tags I gave as examples earlier. If
my current task is to compare the aggregate performance for solver



Figure 1: The complete log viewer application

Figure 2: Reorering tags can have a dramatic effect on the locality of items within the tree. Both trees contain the same items and the selection,
but use are using a different tag order.



Figure 4: Filters can be applied to tag values to reduce the number of
items displayed in the tag trees. Collapsed entries in the tag manager
still give an indication of how many of their values are filtered out.

A and solver B on instance C the an ideal ordering for tags would
be: (4) measurement type, (2) instance, (1) solver, (3) runs. I know
only have to expand the tree to the solver layer for a single mea-
surement type and a single instance. I contend that this can always
be done for the types of tasks that are typical for analysing SLS al-
gorithms. See figure 2 for a comparison of the original tag ordering
and the new tag ordering used for this task.

4.3 Implementation Details
4.3.1 Tag Manager
While being able to reorder tags is then main focus of the tag tree
idea the tag order doesn’t need to be visible at all times. There
are two separate tasks for a tag tree; searching through the tree, and
editing tags. These tasks are interleaved, but never done at the same
time. This means that both the tag tree and the display for editing
tags (the tag manager) can occupy the same space. Switching be-
tween the two is done by extending a tab that appears when the user
drags the mouse to the left edge of a tage tree.

4.3.2 Hidden Selections
One of the big advantages of using a tree to display the collection of
data sets is allowing the use to collapse nodes to make navigation
easier. But what happens when the user collapses the parent of a
selected node? If all indication of a selection just disappears when
a parent is collapsed then it would be very easy for the user to lose
track of what items are current selected; especially when the col-
lection contains thousands of items! Instead the solution chosen is
to highlight a node if either it is selected, or it is collapsed and one
of its descendants is selected. This allows the user to take full ad-
vantage of collapsing parts of the tree for navigation without losing
track of currently selected items. See figure 3.

4.3.3 Tag Filters & Hidden Filters
On top of reordering tags it can be very beneficial to be able to filter
out data sets based on tag values. This is done from within the tag

Figure 5: An example of a generator frame. Just like data sets, gener-
ators are annotated with a set of tags and organized using tag trees.

manager for a tree. An item in the list can be expanded to list all
the values of a tag which are found in the current collection of data
sets. Clicking on a value toggles it from being filtered in and out.
These lists can become quite long so it’s not desirable to leave them
in this expanded state when reordering tags. However just like with
selections in the trees collapsing a tag that has had a filter applied
to it creates a problem.

To address this problem that bar for each tag will gradually fill up
with red as more items become filtered out. The first item filtered
out causes a disproportionately large portion of the bar to fill red.
This guarantees that the presence of a filter is always clearly visible
even if only one value out few hundred has been filtered out. See
figure 4.

4.3.4 animation
This addition to the system is in response to some early use of the
tag tree and tag manager components. Both these components are
really just lists of bars. I started to notice a problem when inter-
acting with either one once they surpassed some number of items.
It became hard to follow the changes. This was particularly bad
with the tag viewer. Animating the movements of these compo-
nents makes the interaction substantially easier to follow.

5 DERIVED VALUES

As mentioned earlier the ability to compute derived values is very
important for this tool for two reasons; (1) some values are not
easy/convenient to gather during runtime but are relatively easy to
determine afterwards, (2) some are impossible to determine until a
search has completed. The other important aspect of derived val-
ues is that they are often very specific to a particular analysis task,
solver, or problem type. This means that they really need to be done
in an extensible way.

To achieve this goal of all derived values are handled with the
concept of a generator. A generator simply takes as input a col-
lection of data sets and returns a new set based on its input. Due
to using this general interface none of implementation details of a
specific derived value need to be hardcoded. Every single one is
treated as a plugin for the tool.

5.1 Implementation Details: Fun with Class Loaders
As mentioned earlier the ability to compute derived values is very
important for this tool for two reasons; (1) some values are not
easy/convenient to gather during runtime but are relatively easy to



Figure 3: In all three images the same single leaf node is selected. The left and middle images show the visual queue left on the parents when
they’re collapsed.

determine afterwards, (2) some are impossible to determine until a
search has completed. The other important aspect of derived val-
ues is that they are often very specific to a particular analysis task,
solver, or problem type. This means that they really need to be done
in an extensible way.

To achieve this goal of all derived values are handled with the
concept of a generator. A generator simply takes as input a col-
lection of data sets and returns a new set based on its input. Due
to using this general interface none of implementation details of a
specific derived value need to be hardcoded. Every single one is
treated as a plugin for the tool.

6 TIME SERIES DISPLAYS

There are a lot of ways to represent time series graphically. The
goal is to pick one which best fits the tasks needed for analyzing
SLS algorithms. So to start we really need to outline what’s impor-
tant. We’re interested in finding trends, anomalies, and patterns in
generally non-cyclic data. This immediately rules out several types
of time series displays such as spirals, time series bitmaps / suffix
trees, or calendar based displays. What we are really left with is
some variety of line plot.

There are two things left to discuss about this choice in plot. The
first is that SLS algorithms often result in time series with a dis-
tinctive shape. This is either an exponential decay or a logarithmic
growth depending on whether we are looking at minimization or
maximization. The important thing about these shapes is that there
are vast regions of the time series which are very uninteresting. To
compensate for this it would be beneficial to be able to distort the
axis to exagerate the interresting regions of the time series.

The last issue to consider is that a comparing several different
time series is a common task. When trying to do such compar-
isons there are two choices; put everything on a single high res-
olution display or split the information across several smaller dis-
plays (small multiples). When putting multiple similar time series
on the same display we are going to get line crossings / occlusion
issues. There is really no way to avoid that if we take the single dis-
play option. So to avoid the potential confusion of a single display
we will use the small multiples approach. This adds on additional
reqiurement that we be able to link the displays together so that
panning/zooming/distorting axis of one display can be duplicated

simulataneously to all displays which are being used in a compari-
son.

6.1 Distortable Axis
There are a lot of ways to represent time series graphically. The
goal is to pick one which best fits the tasks needed for analyzing
SLS algorithms. So to start we really need to outline what’s impor-
tant. We’re interested in finding trends, anomalies, and patterns in
generally non-cyclic data. This immediately rules out several types
of time series displays such as spirals, time series bitmaps / suffix
trees, or calendar based displays. What we are really left with is
some variety of line plot.

There are two things left to discuss about this choice in plot. The
first is that SLS algorithms often result in time series with a dis-
tinctive shape. This is either an exponential decay or a logarithmic
growth depending on whether we are looking at minimization or
maximization. The important thing about these shapes is that there
are vast regions of the time series which are very uninteresting. To
compensate for this it would be beneficial to be able to distort the
axis to exagerate the interresting regions of the time series. See
figure 6.

The last issue to consider is that a comparing several different
time series is a common task. When trying to do such compar-
isons there are two choices; put everything on a single high res-
olution display or split the information across several smaller dis-
plays (small multiples). When putting multiple similar time series
on the same display we are going to get line crossings / occlusion
issues. There is really no way to avoid that if we take the single dis-
play option. So to avoid the potential confusion of a single display
we will use the small multiples approach. This adds on additional
reqiurement that we be able to link the displays together so that
panning/zooming/distorting axis of one display can be duplicated
simulataneously to all displays which are being used in a compari-
son.

6.1.1 Interaction Methods
The two methods for introducing distortions that I tried were a
zooming metaphor and a stretching metaphor. In the zooming
metaphor a region was selected to be a focus. And zooming done
within this region would increase the amount of screen space used
within the selection while leaving the amount of screen space used



Figure 6: Top: A function displayed on undistorted axis. A large
portion of space is devoted to a region where this function is flat.
Bottom: The same function with distortions applied to reduce the
amount of screen space given to the stagnation at the end of the
search.

for elements outside the selection constant. While in the stretching
metaphor the user selected a region then resized the selection (like
a window) to consume a desired amount of screen space. The latter
choice appeared to be more intuitive and is what’s being used in the
current version of the application.

6.1.2 Vizualizing the Distortion
When drawing the grid lines and axis labels for a line plot there
are two goals; (1) it should be easy to spot the regions which have
been distorted or expanded relative to the surrounding regions, (2)
grid line clutter and label overlap should be minimized. These are
somewhat contradictory goals. To achieve the first one some re-
gions have to be more cluttered than others, potentially by a sub-
stantial amount. To achieve the second one there needs to be a limit
on how many grid lines can be drawn within an image.

Both these requirements are for still images. There is yet another
requirement when considering interaction: the grid lines and labels
need to be ”stable”. This means that grid lines and labels should
remain relatively unchanged as you interact with the display. For
instance while panning, if there’s a line and a label for 150 on the x-
axis then this should only really disappear when looking at intervals
that don’t include 150. Similarly a line should never disappear from
zooming in and a line should never reappear from zooming out.

This stability is very important for making the display easy to
follow for the user. And sudden shift in what’s being displayed
can be jarring or confusing to the user. It is the ability to distort
the axis which really turns this into a problem. (When the axis
remain constant this is a trivial problem to solve). The important
thing to remember is that the decision about which lines/labels to
exclude/include as the user zooms in/out and distorts the axis must
be made in the data space, not the display space. Attempts to solve
this in the display space will result in unstable solutions.

The biggest difficulty is for deciding from a set of overlapping
labels which one should be drawn. A potential solution is based off
the following, first decide on a fixed interval (in data space) to draw
labels at. This should be the same interval chosen to draw grid lines
at. From there each label can be defined by the number of interval
it takes to get to a label starting from 0, if two labels are determined
to overlap on screen, the following rules are applied:

• 0 always wins

• an even label always beats an odd label

• if two label are both even then divide both 2 and repeat the
application of these rules

• if two labels are both odd then add one to the lower number
and subtract one from the top number and repeat the applica-
tion of these rules

This results in a very stable way of determining which label will
get drawn when a conflict is detected that can be resolved in time
logarithmic to the value of the largest label in the worst case. See
figure 7.

6.1.3 Linking Displays
As part of the model for distorted axis each display contains a
pair of dimension objects. Dimension objects provide a listening
framework that allow other components of the system, particularly
other dimension objects, to be synched with them. This synching
is asymmetric and is performed by duplicating any calls to meth-
ods which alter the extent or scaling of a dimensnion. As each
dimension is independant of the other view linking can be done on
independantly on each axis.

6.2 Managing Displays
The initial goal was to allow a flexible system for constructing dis-
plays. To further this the user is given control over how each dis-
play is presented through a plot manager tab that’s part of each plot.
This tab contains a list of each item within plot. Items in the list can
be reordered to adjust occlusion betweens different plot elements.
Items can also be expanded to provide additional information and
control about the plot. For the two varities of plots currently sup-
ported the control is limited to changing the display colour and the
additional information is limited to the collection of data sets which
contribute to this plot. See figure 8.

7 DISCUSSION AND FUTURE WORK

Three core issues were outlined as being necessary for a tool to
be used for SLS analysis. These were data management, derived
values and interactive displays. The tool developed as part of this
project provides a solution for each of these issues while trying to
acheive two additional design goal of minimizing the use of dia-
logues in favour of drag and drop. As for the design goal of trying
to remain flexible instead of following a prescribed set of displays,
I can’t really say this was achieved until more displays and derived
values are provided to the user.

There are three categories of work that still need to be done. The
first category requires doing some amount of user testing to deter-
mine if certain design choices (ie. drag and drop vs dialogues) are
really worth it. There also needs to be some time spent improving
the affordances for the various control schemes. For many cases it
likely that the only reason certain aspect of the control is intuitive
is because I implemented them. This will definitely be the case for
interactions with the time series plots where time needs to be spent
to simplify the controls.

On top of these usability and user testing issues there are a set of
features which really need to be developed to improve the value of
the tool:



Figure 7: Top: No distortion, grid lines and axis labels are evenly
spaced. Middle: Minor distortion, grid lines become grouped near the
center of it and the number axis labels is reduced to prevent overlap.
Bottom: Substantial distortion, grid lines become very clumped near
the distortion and there is only room for 1 axis label.

Figure 8: Top: The plot manager for a time series display.

• The current time series plotter maintains the model for the
axis distortion and provides this information to whatever is
being drawn onto it but ideally this would all be handled trans-
parently. A component shouldn’t have to know how to add
inflection points into what used to be a straight line in the
data because the display is heavily distorted. What this really
means is that the plotter should not directly provide a graph-
ics object to its subcomponents and instead provide a wrapper
that includes knowledge of the distortion. This would allow
for a general purpose distortable vector graphics display.

• The existing time series display needs to be enhanced to allow
various annotations to be displayed.

• The original goal was to provide several more types of dis-
plays and derived values tailored to the TSP problem. These
were all cut due to time restrictions and they really should be
added back in.

• The types of data import are limited to a (poor) xml serial-
ization of data set objects at the moment. This needs to be
extended to be more robust.

• There is no facility to edit the tags for a data set from within
the application. This really need to be addressed.

• The support for linking views need to be generalized to go
along with the addition of new display types.

• The framework for supporting derived values also needs to be
extended substantially. While allowing plugins to be devel-
oped and dropped in is definitely going to be a feature that
remains it would also be beneficial to allow additional ways
of computing derived values such as support for simple script-
ing.

I plan on continuing the development of this tool to aid in my own
investigation of SLS algorithms and tuning.

REFERENCES

[1] W. C. W. Hoong Chuin Lau and S. Halim. Tuning tabu search strategies
via visual diagnosis, 2005.

[2] L. P. Manuel Lopez-Ibanez and T. Stutzle. Exploratory analysis of
stochastic local search algorithms in biobjective optimization, 2009.

[3] F. Mascia and M. Brunato. Techniques and tools for local search land-
scape visualization and analysis, 2009.



[4] H. C. L. Steven Halim, Roland H.C. Yap. Viz: A visual analysis suite
for explaining local search behavior, 2006.


