
CS533C Project Propasal

Visualization Tool for Analyzing SLS Runtime Behaviour

James Styles

jastyles@cs.ubc.ca
Department of Computer Science

University of British Columbia
Vancouver, BC, Canada

1 Domain

Stochastic Local Searches (SLS) are a class of meta-
heuristics for solving hard combinatorial optimization
problems. Common examples of combinatorial prob-
lems are satisfiability(SAT), travelling salesman prob-
lem (TSP), job shop problem (JSP) and vehicle rout-
ing problem (VRP). Each of these problems is NP-
complete. Local searches operate by choosing some
initial positions within the search space (the set of all
possible solutions) then choosing a sequence of moves
to new positions based on the neighbourhood of their
current position. See [8] for a thorough overview of
SLS.

A substantial portion (as high as 90%) of the ef-
fort in development of SLS algorithms is in the analy-
sis and tuning of their performance. The analysis task
is made difficult due to the high dimensionality of the
search space and the complexity in the SLS algorithms.
There is however a large amount of information that
can be extracted from an SLS algorithm as it is run-
ning. Though the exact information that is relevant is
highly dependant on the particular SLS being consid-
ered, some examples are:

• information that can be gathered with minimal
overhead added

– solution quality at each iteration

– time taken for each iteration

– time taken to evaluate neighbourhoods for
each iteration

– time taken to evaluate heuristics for each it-
eration

– neighbourhood(s) used for each iteration

– details about the type of move taken

– justification for changing neighbourhoods (ie
for portfolio based searches, or transitions be-
tween intensification & diversification)

– current best solution at each iteration

– ...

• information that can be gathered with substantial
overhead added

– current set of solutions at each iterations (for
population bases searches like GAs, EAs, ACOs)

– current set of solutions contained within the
neighbourhood at each interation

– current solution at each iteration

– ...

The instrumentation necessary to extract informa-
tion from a local search can add substantial overhead.
So you must be careful about any measurement of time
taken to perform some task within the algorithm other-
wise you could be recording information about the per-
formance of the instrumentation instead of the solver.

On top of the information that can be gathered
directly from the search there are additional pieces of
information that can be derived such: as the distance
between the solution at every iteration and some spe-
cific solution (usually the final best solution or some
elite solution representing local minima), the aggregate
performance of the search over a set of multiple runs
on the same problem, or the aggregate performance
of different SLS methods on a particular instance of a
problem.

2 Data Set and Tasks

The data set used for this project will be generated
by logging runtime information from tuned versions
of Kjeld Helsgaun’s LKH implementation [1] on the
TSPLib instances [4]. The tuning has been performed
automatically using ParamILS [2]. Several attempts at
tuning have been performed each resulting in a different
set of parameters to Kjeld’s implementation resulting in
a tsp solvers that behave differently but provide the ex-
act same types of runtime information. The differences
between the solver performance is quite substantial for
certain problem instances with some solvers taking 3-4
times as long to find solutions as others.

-1-

The tasks this project will be designed at aiding
will be (1) comparing the aggregate performance of
the solvers to eachother across the various problem in-
stances, and (2) attempting to provide explanations
any notable performance differences (ie, showing trade-
off between neighbourhood quality and time to com-
pute neighbourhoods for various problem instances, or
comparing the quality of diversification phases amongst
solvers).

3 Personal Expertise

I work for a company (www.actenum.com) that focuses
on developing applications to find solutions to large op-
timization problems. The problems we consider are
very large scheduling or resource allocation problems
with numerous side constraints which are specific to
a client. To aid in the development of our models and
solvers for these problems we developed a set of tools to
visualize their runtime characteristics. I was involved
in both the development and use of these tools. Unfor-
tunately I can’t use any of these tools or the data sets
generated for this project.

4 Proposed Solution

The core idea behind the visualization will be the in-
teractive creation of displays. A display is defined by a
set of data sources and set of mappings from those data
sources to some visual encoding within the display. The
compatible visual encodings is determined by the type
of display. There are two key parts to creating/editing
displays: managing the data sources and managing the
mapping to visual encodings. Multiple displays can be
created and aligned in a grid to create a small multiples
views.

4.1 Managing Data Source

The visualization will manage a catalogue of data sources
that can be used within the visualizations. Each item
in the catalogue is associates with a set of tags t0...n;
each tag is a (tag name: tag value) pair. The user can
provide an ordering to tag names to organize every item
into a tree hierarchy. The catalogue is then displayed
using a tree table, see figure 1.

Time series are added to a display by selecting
them from the global data catalogue. Each display then
manages its own local catalogue (which is essentially a
filtered view into the global one). Each display can have
its own ordering for tags. Derived values will appear as
items in the local catalogues for a display. Navigation
and selection in displays can be linked.

Default Param Set -

a280 -

ali535 +

run 1 -

run 2 -

solution quality
position
neighbourhood size

solution quality
position
neighbourhood size

run 3 +

run 4 +
instance details -

a280.tsp

att48 +

att532 +

bayg29 +

Figure 1: A mockup of the treetable view for data cat-
alogues

4.2 Managing Displays

Each display has 2 modes: a view mode, see figure 2 and
an edit mode, see figure 3 and 4. Entering a display’s
edit mode brings up a list of components that are part
of the display and a menu for creating new components
and derived values.

The component list provides an overview of ev-
ery component that has been created for this display
whether it is currently visible or not. Each line contains
the components name, a small preview of what the com-
ponent looks like in the display and a toggle for deter-
mining whether it is currently visible. Reordering the
list of components (done by dragging the row around)
reorders the layering of the components. A component
near the top of the list will be drawn on top of a com-
ponent near the bottom. Selecting a component brings
up a panel to showing the properties of the component
(ie how it should be drawn, what data items its using,
etc) which can be used to edit the component.

The types of components that can be added to the
display depends on the kind of display. The first type
that will be added is a basic time series display. It will
allow adding line graphs, filled regions defined by the
extremes of a set of time series, and text annotations.
If time permits another display type will be added for
drawing solutions to TSPs.

5 Use Scenario

A set of runs for two solvers, A & B, has just finished
for some the pla33810 TSPLIB instances. Each solver
has completed 10 runs and have been instrumented to
provide (1) current solution at each iteration, (2) so-
lution quality at each iteration, (3) annotations about

-2-

4130

4120

4110

4100

4090

4080

4070

Figure 2: A mockup of the treetable view for data cat-
alogues

4130

4120

4110

4100

4090

4080

4070

Data Management Display Management Derived Values

Components

Run1 Qual...

Run2 Qual...

Run3 Qual...

Figure 3: The view mode for a display

4130

4120

4110

4100

4090

4080

4070

Data Management Display Management Derived Values

Components

Run1 Qual...

Run2 Qual...

Run3 Qual...

Run 2 Quality

Default Param Set -

a280 -

run 1 -

solution quality

run 2 -
solution quality

run 3 +

Type: Basic Line

Color:

Figure 4: The edit mode for a display with a component
of the display selected.

Data Displays

...

...

...

...
...

default params

tuned params 1

tuned params 2

tuned params 3

Figure 5: A mockup of the entire application

transitions between intensification and diversification.

The user creates a new display for solver A and en-
ters its edit mode. The user opens up the data manager
for the new display and adds the time series informa-
tion for solver A’s runs from the global catalogue. The
user then creates a set of derived values containing the
statistics for solution quality (min, max, avg) for all the
runs and creates one component to draw the average as
at the top layer as simple line and another component
to draw the filled in region between the min & max
values on the next lower layer. The user then creates
a new display and repeats the previous steps but with
solver B’s runs.

With both displays side by side the user notices
that solver A seems to stagnate much quicker than
solver B. The user brings enters the edit mode in the
display for solver A and creates a component to di-
rectly show the solution quality for one of the runs
and another component to show the annotations for
transitions to diversification phases and hides the old
components showing min/max/average statistics. The
user finds one of the transitions and selects (in the
graph) the time point before one of the diversification
phases. The user then constructs a new derived time
series showing the similarity between the solution at
each iteration and solution at the selected time point
and then hides the component for that runs solution
quality over time. With just the similarity score over
time and the diversification annotations showing the
user notices that the solution at the end of diversifica-
tion is very similar to the solution at the right before di-
versification. This shows that the diversification is too
weak causing the solver to be trapped around a single
local minima which explains the early stagnation.

6 Implementation Tools

The visualization will be implemented in java using
Java2D.

-3-

7 Milestones

• data set (logging format and instrumentation of
[1])

• core components (data catalogue, basic zoomable
display for time series)

• basic derived values (statistics, basic arithmetic,
composition, convolution)

• TSP-specific derived values (similarity measures,
etc)

• (if time permits) TSP solution display

• (if time permits) alternative time series displays
(see [9], [5])

8 Previous Work

Previous work for time series visualization [5][9][3]. Pre-
vious work for analysis of SLS algorithms [10][6][7][12][11].

References

[1] http://www.akira.ruc.dk/~keld/research/

LKH/.

[2] http://www.cs.ubc.ca/labs/beta/Projects/

ParamILS/.

[3] http://www.cs.umd.edu/hcil/timesearcher/.

[4] http://www.iwr.uni-heidelberg.de/groups/

comopt/software/TSPLIB95/.

[5] Lior Berry. Binx: Dynamic binning and scaling of
time series, 2004.

[6] Steven Halim and Roland H.C. Yap. Designing
and tuning sls through animation and graphics:
An extended walk-through, 2007.

[7] Holger H. Hoos and Thomas Stutzle. Analyzing
the runtime behaviour of iterated local search for
the tsp, 1999.

[8] Holger H. Hoos and Thomas Stutzle. Stochastic
local search: Foundations and applications, 2005.

[9] Robert Kincaid and Heidi Lam. Line graph ex-
plorer: Scalable display of line graphs using fo-
cus+context, 2006.

[10] Franco Mascia and Mauro Brunato. Techniques
and tools for local search landscape visualization
and analysis, 2009.

[11] Hartmut Pohlheim. Visualization of evolutionary
algorithms - set of standard techniques and multi-
dimensional visualization, 1999.

[12] Hoong Chuin Lau Steven Halim, Roland H.C. Yap.
Viz: A visual analysis suite for explaining local
search behavior, 2006.

-4-

