
ExecVus — Execution Views

Alexandru Totolici
Department of Computer Science

University of British Columbia
201-2366 Main Mall

Vancouver BC Canada V6T 1Z4 
alex.totolici@gmail.com

ABSTRACT

Operating systems are among some of the most complex forms of 
software developed for widespread use. is popularity causes most 
of the bugs to eventually bubble up and become action items for 
developers. e intricacies of any one operating system are rarely 
completely understood even by its developers, as code transcends 
programmer generations. Developers spend a long time before they 
can make the "x, "rst in reproducing a bug to identify where it 
occurs and second in understanding the code that executed the 
interesting path. ExecVus is a tool that helps developers visualize the 
characteristics of code that has been executed, in order to reduce the 
time cost of the latter task.

KEYWORDS: software visualization, text, source code.

1 INTRODUCTION

Complex software has complicated bugs and convoluted paths 
through which it reaches undesirable states. As practices go, 
simplifying software during development should be a goal for every 
programmer, but not much can be done about software that is 
already deployed and running. Some of the most important ‘live’ 
software is gigantic: operating systems have tens of millions of lines 
of source code (Mac OS X 10.4 had 86 million [1]), and they 
involve multiple generations of code, each written by a different 
developer. Whether it is Microsoft’s proprietary Windows, with a 
team of senior software architects driving it, or open-source 
contender Linux, with a worldwide following of hackers tweaking it, 
no operating system has the luxury of developers knowledgeable in 
all the various subsystems and modules contained therein. Yet, when 
bugs are found and a "x is needed, it may not be the experts that 
those bugs go to, but developers moderately unfamiliar with the 
code.

Tralfamadore [2] reduces the time required to understand code by 
giving developers a way to look at what is essentially a recording (or a 
trace) of the execution of the entire system. e targeted operating 
system is run inside a modi"ed version of the Qemu virtual machine 
emulator and Tralfamadore records all the processor operations, 
along with all the relevant information: where the call came from, 
where the next call happens, what data was used and by what parts 
of the code etc. Tralfamadore records what the CPU sees, but this 

view is not useful for developers looking to get a quick 
understanding of how a particular piece of code works: a quick peek 
at the trace data shows just how unfriendly it is to look at.

Figure 1. Contents of an ASCII-converted (raw) trace file, as seen 
in a shell session. Trace files are binary blobs parsed into 

ASCII text by Tralfamadore

e motivation behind Tralfamadore is not simply to collect this 
information and make it available to an analyst armed with text 
parsing command line tools, but to allow software developers to 
easily understand how code is executed. For that, we propose 
ExecVus, a visualization system that allows developers to get a quick 
understanding of code execution patterns.

e rest of this paper is as follows: In Section 2 we describe the 
key features of ExecVus. Following, in Section 3 we present two 
sample scenarios that illustrate how ExecVus could be used by 
developers. Section 4 looks at the related work in the area. Section 5 
evaluates the strengths and weaknesses of ExecVus, while Section 6 
presents avenues for future work and how ExecVus could be 
improved. e "nal section concludes.



2 EXECVUS

Figure 1. ExecVus in action in fs/namei.c Coloured bars are a way 
to visualize the available information. 

ExecVus allows developers to see which code has been executed (for a 
given execution trace) and what calls have been dispatched by any 
given function. It uses the underlying data from Tralfamadore, 
though for this version we chose to use a pre-parsed trace. While this 
did not allow us to run any live queries, it made for faster application 
response as we did not have to wait on the processing tools to 
analyze the relevant portions of the trace. e annotations are shown 
overlaid on the Linux kernel source tree, as the trace data used had 
been recorded from a virtual machine running the Linux operating 
system.

ere are two main components implemented in ExecVus 
currently. One is a collapsed view of the source code, showing only 
function headers and elements for which there is information in the 
trace. e second component adds scent to function names, giving 
developers a summary of the activity recorded for the function.

2.1 Code Collapse
A developer using ExecVus is not interested in the entirety of the 
source code, but only those sections that have been executed. As 
source "les can be quite large and span multiple screens on a 
computer monitor, we decided to show, by default, only the lines of 
code that have interesting information associated. is includes 
symbol declarations, function headers to give developers an idea of 
which functions are used and which are not, and all lines for which 
trace data is available. Figure 2 shows the default view seen upon 
loading the 
block/elevator.c "le.

Figure 2. Default view of a source file, seen with ExecVus. Lines 
coloured in blue are considered interesting.

Function headers and symbol declarations are visible by default, in 
black. Lines of code coloured in blue represent elements for which 
the trace has additional information available. ere are no 
restrictions imposed on what kind of elements these can be (i.e. 

function names), though of course comments could not have any 
execution information associated. Indeed, line 108 above is indented 
to show it belongs in the body of a function and we can tell it is an 
if statement.

By including the original source line numbers we are further 
emphasizing that this is a collapsed view and that gaps exist between 
the shown elements. Line numbering and code indentation are 
standard components of modern Integrated Development 
Environments (IDEs) that developers use routinely, and we felt that 
it is suitable to include them as a way to visually reinforce the 
purpose of ExecVus.

In case a developer requires it, the source code is still available and 
can be expanded quite easily by simply clicking on the name of a 
function. e source browser will slide the code into place, using 
animation for the transition. We felt that showing the code 
instantaneously would confuse the developer and create an 
unpleasant visual effect, and animating the transition was the natural 
solution to ensure continuity. e code slides down from the source 
of the click, with the direction of motion serving as a visual cue for 
the developer in case the action was triggered by an accidental click. 
Code without annotations, when expanded, is presented in a slightly 
faded shade of gray (Fig. 3) to distinguish it visually from the 
interesting sections.

Figure 3. Expanded function body

2.2 Scented Functions
e addition of scents to function names (in the form of horizontal, 
stacked bar graphs) gives users of ExecVus an immediate idea of the 
number of functions called by the scented function, and the relative 
distribution of these calls. Each colour band represents a function 
called by the scented function, while the area of the total bar that the 
band occupies indicates the percentage of calls, out of the total made 
by the calling function, that were directed to that particular callee.

e colours are computed in a way that gives the largest visual 
distribution, so that the differences between the bars are as obvious 
as possible, given a variable number of functions called.



Figure 4. Scented function names. Colours represent various 
functions called within the body. Sizes are relative to the 

entire call count.

2.3 Technical Considerations
ExecVus is implemented on top of Mercurial1’s web view. As part of 
the original effort for Tralfamadore, modi"cations were made to the 
way Mercurial displays its information, namely adding code 
colouring and graphing control $ow. Inline statistics were also 
provided for function calls, but they were only done by showing the 
number of times a path was taken, without any other visual cues.

Animations are implemented in JavaScript, with the aid of the 
jQuery2  framework. Communication between the front-end and the 
trace information is done through Python, partly as Mercurial’s web 
view theming engine is implemented in Python.

Scenting of the widgets is done through a combination of 
JavaScript and HTML5 <canvas> drawing. All the code meant to 
run client-side has been optimized where possible in order to allow 
for a smooth experience.

3 SAMPLE USES

ExecVus is not yet ready to tackle all duties related to debugging that 
we plan it to one day excel at, but a few tasks can be currently 
accomplished with the existing feature set.

For debugging, ExecVus can show developers what code is 
executed, although this feature is currently only available at the 
function-level. Identifying at a glance whether a function has been 
executed is important, as it reduces the time spent in debugging 
trying to trigger all the code paths needed to arrive to that function. 
Alternatively, the bug may be related to a certain function, though 
expected to run, being skipped.

Another task ExecVus can give quick information about is 
malware detection and understanding. Using scented widgets we can 
quickly present to developers an overview of the code paths that a 
certain function is involved in. A function that is only rarely 
involved in certain paths may indicate curious behaviour worth 
further analysis. Scented widgets let developers decide which 
functions are worth looking at by visually encoding the level of 
activity recorded.

4 RELATED WORK

ExecVus would not be possible without Tralfamadore, as it is a 
visualization system for the data produced by the latter. We hope 
that the ideas proposed are extensible to other source-code 
visualization systems, whether analysis or development oriented.

SeeSoft [3] is a source code visualization system that displays line-
oriented software statistics, such as code age. An important 
contribution of SeeSoft to Software Visualization is the full "le 
display, with bars used to represent code lines. For SeeSoft’s goal of 
presenting metrics on the whole of the code, this view is important 
as a way to show the full source "le at once, while still allowing for 
lines to be distinguishable. We assessed the value of replicating 
SeeSoft’s view for our "le display, but further consideration of our 
task scenarios made it unnecessary. For trace analysis to be useful, the 
recorded information will be focused enough that we would not have 
annotations for every single line of code. As Tralfamadore aims to be 
a dynamic, query-based analysis tool, some of the data "ltering will 
be done before ExecVus produces the visual representation.

Orso et al. [4] discuss various ways to visualize software at 
different levels of detail (system-, "le- and statement-level). e 
system-level view is not something we are currently considering for 
ExecVus, although that may change in future iterations. We found 
the proposed "le- and statement-level views to be lacking in a few 
ways, most importantly by encoding nested blocks both through 
colour and position (indentation). e colour encoding is of little 
bene"t because it does not add execution information but simply 
reinforces the logical structure of the source code.

Path Projection [5] uses a simple code display, typical of IDEs, 
but pulls in the called functions at the location from which they are 
called, allowing the developer to see $ow without navigating to 
another window. We think this view is very powerful and, given the 
tasks considered for ExecVus, we aim to implement a variation that 
accounts for multiple paths of interest being shown at once.

Scented widgets are an idea introduced by Heer et al. [6] that we 
felt had great applicability to our problem. ere are many different 
locations in our system where scented widgets could have been used, 
but as an aid to navigation we felt they were most suited for function 
names. is way they serve their intended purpose of giving 

1 http://mercurial.selenic.com

2 http://www.jquery.com



information about the result of an action even before the action is 
executed.

5 EVALUATION

We consider the features currently available in ExecVus make a 
compelling argument for the tool and for future work. All choices 
made in developing the system were executed with developers and 
task scenarios in mind, and as such multiple attempts were made to 
minimize the effort required in learning the tool and its features.

5.1 Strengths
Even though ExecVus is not aimed at drop-in or casual users, we feel 
that the system is relatively easy to navigate for developers generally 
familiar with IDEs. e source view is central to our tool and a good 
carry-over from traditional development environments, easing users 
into their new role as execution analysts. e expanding view works 
similarly to how code folding works in IDEs that have the feature, 
and the animation adds functional and aesthetic value.

Scented widgets reinforce navigation cues by providing an idea 
about how interesting a function is. ey allow the developer to 
decide, even before expanding the code view, which functions hold 
the most information.

Colour choices also help navigation by providing quick, highly 
recognizable markings for places of interest. Even a collapsed source 
"le can span multiple screen-lengths, and a developer may quickly 
scroll through to see if annotations are available. With highly 
saturated colour bars attached to relevant lines of code, targets are 
visible even when fast-scrolling. e quiet black and gray used for 
general text, as well as the darker blue used to encode traced 
functions do not attract the eye as much as the colour bars. e 
positioning of the bars also makes them easier to spot, since they are 
not interspersed with the text. 

We consider the rainbow colour scheme appropriate in this 
context, as there is no intended progression from red to blue (as 
some other tools using this colour scheme employ). We are simply 
interested in an effective way to maximize colour differences.

Since ExecVus is a web-based tool, extensions to the interface can 
be made without requiring a massive rewrite of the front-end or the 
need for a dedicated plugin interface. e learning curve for adding 
these extensions varies depending on the level of interaction with the 
backend that is required, which includes any meaningful work to be 
done with control-$ow analysis. e data that is currently exposed  
to the front-end focuses on function calls exclusively.

5.2 Weaknesses
Some of ExecVus strengths are also causes of weakness, the most 
notable of which is colour. While the algorithm used to generate 
colours gives us a nice distribution that minimizes colour 
duplication, it does not ensure colour-blind safety, leaving certain 
users unable to use the full power of the system. is is especially 
true in combination with the way in which we choose ‘seed’ values 
for Hue, based on the line number, as certain seeds are particularly 
bad for colour blind users.

e reasoning behind choosing the seed value based on line 
numbering has been explained as a way to ensure that no false 
connections are made between bar charts using the same colours. 
e variation can be too subtle, as seen in Fig. 5, and it may not be 

perceived at all by some users, depending on the viewing display’s 
quality and calibration, as well as the user’s own optic ability. 

Figure 5. Subtle colour differences are hard to perceive, even 
though the functions they refer to are unrelated.

Even with a good algorithm to choose colours as ‘far apart’ from 
one another as possible, the problem of colour cacophony still 
presents itself when the scent has to work for functions that have 
upwards of 10 callers. is problem doubles when we consider the 
thickness of the individual bands also decreases to being nearly-
invisible. 

e choice of a standard size for the stacked bar graphs may 
mislead certain users into thinking that the aggregate number of calls  
is the same for each function. 

Lastly, No visual cues are offered in directory listings (Fig. 6) as to 
where interesting information can be found, beyond a visual 
indication of whether annotations exist or not.

Figure 6. Directory Listing. Red denotes a file with annotations, or 
a folder that contains such files. No guidance available to 

help decide where to look next.

5.3 Lessons Learned
Interesting problems are more difficult than one might originally 
expect or calculate. e unforeseen issues that slowed down 
development of ExecVus were mostly related to the fact that 
Tralfamadore is also a tool under development, though with the 
advantage of a hefty head-start. e biggest difficulty was "nding a 
data set that was fairly recent and complete, to allow all the 
manipulations required by this front-end tool. More time has been 
spent reverse-engineering the trace than doing anything else, and this 
cost was not expected at the onset.



While literature in the "eld mentions this repeatedly, colour 
choices are very difficult to make, especially for systems with a 
variable number of bins requiring distinct colours. Our encoding 
required multiple dimensions to be colour-coded (function-scope, 
"le-scope), and consequently trade-offs were required to ensure 
adequate colouring can be achieved. Unfortunately, these trade-offs 
limit the tool’s usability by the colour-blind and the sight-impaired.

It’s fastest to learn a new tool or programming language when you 
need it the most.

6 FUTURE WORK

An important weakness of ExecVus is the lack of a front-end for 
inspecting the control-$ow. Some backend code exists to accomplish 
this task, but lack of time prevented development of a suitable front-
end. e planned implementation would allow the user to click a 
called function and ‘zoom into’ that function. A "rst pass would 
simply keep a list of links to previous locations as breadcrumb 
navigation, while a more advanced implementation could closely 
mimic the approach taken in Path Projection.

Other areas of improvement address the observed weaknesses of 
the system as follows:

For scent encoding it would be advisable, irrespective of colour 
choices, to encode the called function names in the view as well. A 
possible solution would be to present the name of the function as a 
hovering popup when the user points their mouse over the 
corresponding colour bar. In this manner we could also display call 
counts and other statistical information that is pertinent to the task 
(although care must be taken not to cause information overload). An 
extension of this point is the lack of a way to visualize where the 
most calls are made in any given function. 

e size of the bar charts should be relative to the total count for 
the "le to allow for effective comparison. It is also advisable to 
increase the size of the bar graphs so that individual bands are easily 
distinguishable. e portion of the page allotted to the code view 
can be safely decreased, as the more interesting task at this point is 
the identi"cation of interesting locations in the code. While this may 
allow for more pixels available for drawing the different bands, we 
are still faced with the possibility of having to display very small 
bands (for functions involved in tens or hundreds of paths). One 
approach would be to limit the number of bands shown at any given 
time, and provide a visual cue that some have been omitted. A 
"sheye view can be used to magnify areas with thin bands.

Under-the-hood improvements may be made to move as much of 
the processing out of the client’s browser and into the server 
backend. is can bene"t from caching, where appropriate, or 
simply faster processing allowing for a smoother experience. 
JavaScript should not be used for complex string parsing or multiple 
array traversals.

7 CONCLUSION

We have begun development on ExecVus, a visualization system to 
be used in conjunction with the Tralfamadore execution mining 
system. e tool is aimed at developers looking to debug complex 
code, but that need to "rst understand the software’s behaviour. It is 
also aimed at security researchers analyzing malware, by focusing on 
and making obvious the paths taken by code that is actually used in 
the course of execution.

Upon implementing some of the suggestions for future work, we 
believe ExecVus can stand on its own as a great "rst tool for those 
interested in understanding software behaviour. 

REFERENCES

[1] Jobs, Steve (August 2006). Live from WWDC 2006: Steve Jobs 
Keynote http://www.engadget.com/2006/08/07/live-from-wwdc-2006-
steve-jobs-keynote/ Retrieved 2009-12-16

[2] G. Lefebvre, B. Cully, M. J. Feeley, N. C. Hutchinson, A. War"eld. 
Tralfamadore: Unifying Source Code and Execution Experience http://
people.cs.ubc.ca/~andy/papers/tralf-eurosys-!nal.pdf Retrieved 2009-12-16

[3] S.C. Eick, J.L. Steffen, E.E. Sumner Jr., Seesoft - A Tool for Visualizing 
Line Oriented Software Statistics” IEEE Transactions on Software 
Engineering, vol. 18, no. 11, pp. 957-968, November, 1992

[4] A. Orso, J. Jones, M.J. Harrold. Visualization of Program-Execution 
Data for Deployed Software Proceedings of the ACM Symposium on 
Software Visualization, San Diego, CA, USA, June 2003

[5] K.Y. Phang, J. S. Foster, M. Hicks, V. Sazawal. Path Projection for 
User-Centered Static Analysis Tools. 8th ACM SIGPLAN-SIGSOFT 
Workshop on Program Analysis for Software Tools and Engineering, 
Atlanta, GA, USA, November 2008.

[6] W. Willett, J. Heer, M. Agrawala. Scented widgets: Improving 
navigation cues with embedded visualizations. IEEE Transactions on 
Visualization and Computer Graphics, vol. 13, iss. 6, pp.1129, 2007

http://www.engadget.com/2006/08/07/live-from-wwdc-2006-steve-jobs-keynote/
http://www.engadget.com/2006/08/07/live-from-wwdc-2006-steve-jobs-keynote/
http://www.engadget.com/2006/08/07/live-from-wwdc-2006-steve-jobs-keynote/
http://www.engadget.com/2006/08/07/live-from-wwdc-2006-steve-jobs-keynote/

