Alexandru Totolici CPSC 533C
alex.totolici@gmail.com Friday, October 30, 2009

EXECVUS

ExecVus - Execution Views

Domain, Task, Dataset

When it comes to software debugging, developers have a variety of tools available to them:
gdb, otool, DTrace, etc., but most of these tools are nearly impossible to use for kernel
debugging. Partly motivated by these shortcomings, the UBC NSS! Lab came up with
Tralfamadore. One of the many ways in which this tool can help developers is by showing them
what parts of their code have been executed, and with what values.

A typical debugging workflow would be:

|. Data collection.A developer collects detailed execution information, by running the
targeted OS inside a modified Qemu virtual machine; the Tralfamadore-specific modifications
made to Qemu allow for very detailed execution traces to be collected.

2. Data presentation. The developer can analyse the collected information (the ‘trace’) in a
number of ways; in this case, we're overlaying the execution paths on top of the Linux kernel
source code.Annotations show the developer what path execution took through their
function(s).

3. Data navigation.The developer is interested in inspecting where code is called from and
howZ2They are also interested in following the execution flow up the chain (callers to the
code under review) or down (functions called by the code).

Expertise

| have worked with the NSS as a Research Assistant for the past 3 months. During this time |
have been briefly exposed to the existing user interface and identified a few shortcomings and
potential ways in which to improve and extend it. Discussions with lab colleagues have also
proven fruitful in providing me with ideas.

Proposed InfoVis solution
My solution aims to improve the experience of using Tralfamadore in a number of ways:

I. Code collapse
In a fashion similar to how IDEs allow users to hide code that they are not working on,
ExecVus will hide portions of code that have not been executed in the current trace.

I Networks, Systems, and Security

2'How' refers to parameter values and data flow, and this is partly future work; ExecVus will be extended to cover
these as they're made available.

Alexandru Totolici CPSC 533C
alex.totolici@gmail.com Friday, October 30, 2009

2. Code reorder

The GNU C compiler does a number of optimizations on code, and one of the results of
that process is that the order in which code is written is not necessarily the order in which
code is executed.When the code is collapsed, the developer also has the option of seeing it
in the order in which it was executed, and thus we can avoid the loops that sometimes
appear in the application.The options will be execution order and code order.VWhen in

execution order, the code has to be collapsed, since we are not going to determine how
the non-executed portions of code have been reordered by the compiler.

3. Improve selection of the execution path

When numerous paths overlap, limitations in screen visual estate prevent us from displaying
all of them simultaneously yet distinctly. The proposed solution will provide a subview that
allows the user to easily differentiate between the various paths and select the one that
they’re interested in.

4. Hierarchy filtering (on annotations)
For developers that know exactly where they need to look there will be an option to turn
off displaying those folders in the Linux source tree that have no annotations.

5. Hierarchy overview / quick-jump (node peek)

Also, hovering over an element (folder) that has annotations will bring up an inline tree
browser that will display the subfolders that also have annotations and allow the developer
to quickly jump to where they want to go.

Scenario:
The developer wants to understand why a flag is incorrectly set, so he:
I. Collects a trace with the typical execution that would set said flags.
2. Overlays the trace on the Linux kernel source tree.
3. Opens up ExecVus.

4. Hovers over the drivers folder to bring up the ‘node peek’ and navigates to the tralf
folder, where his code resides.

5. Collapses the code.

6. Switches to ‘execution order’ and scans down to where the flag should have been set.
7. Since the flag is not set, he expands the code, which also switches back to code order.
8. Looks at ‘Call Sources’ to figure out where his code is being called from.

9. Navigates upwards the call chain.

Alexandru Totolici CPSC 533C
69229045 Sunday, October 18,2009

lllustrations / Mockups

ExecVus
<::l E> X {} (http://execy.us/linux/deep-inside - the - kernel-source - free/somefile.c | @
|
/ Call Sources ﬂ
* ©Happy6GoLucky Inc.
* Hello <user> program to demonstrate our superior Linux Module Development ccaller>
strategies N
Y Of<...>
<...>
#include <linux/init.h> Gf-->
#include <linux/kernel. h> <7
#include <linux/module.h> (ca::en
. #include <linux/proc_fs.h> «caller>
i -
Click node #include <linux/uaccess.h> g <2
...for radial menu with - 3 ". <...>
options fo linearize CO"GPSG SO/GRLY): <...>
.. the function bel
P eunc.lo e MORE than enough to fit anyone's first name g("'>
<, ..>
char name[BITESIZE]: O|<caller>
<,..>
static int proc_read(char *buf, char **start, of f_t offset, int count, int *eof, void @)<caller>
*data) {
int len;
len = sprintf(buf, "Hello %s", name):
*eof = someOtherFunction(1):
return len; X
) Histogram
api.c 640k.h somefile.c Search S
»

Figure 1:The Code View (click for a larger, online version)

ExecVus

<-_-] E> X Q [http://execy.us/linux/deep-inside - the -kernel-source - tree/somefile..c | @

|
! Call Sources ﬁ]
* ©Happy6GolLucky Inc.
* Hello <user> program to demonstrate our superior Linux Module Development) ©)<caller>
strategies <...>
*/ oc...>
Click to 'zoom out' to caller. <...> N
#include <linux/init.h> Of<...> .
#include <linux/kernel_ h> New view will have exec flow selected automatically, new <...> Click to see call gf‘dph
#include <linux/module.h> tab added or moved to the front of the line, O|<caller>
#include <linux/proc_fs.h> &@|<caller> | Who called this caflerhigher up?
#include <linux/uaccess.h> ol y,
MODULE_LICENSE("Dual BSD/GPL"): Gfe...>
<...>
#define BITESIZE 64 // MORE than enough to fit anyone's first name g""’
<...>
static char name[BITESIZE]: jtcallen
Cl
@@@@ static int proc_read(char *buf, char **start Click to 'zoom in' oid <caller>
*data) {
Tabs keep track of| where int len; New view will have exec flow selected
we've been len = sprintf(buf, “Hello %SI.M automatically, New tab created or we're
(it's easy to get los} looking *eof = someOtherFunction(1); moving a previous on to the top of the pile.
at code) return len; -
P — T Histogram
api.c 640k.h somefile.c Search L
&

Figure 2: Zoom Controls (click for a larger, online version)

http://execv.us/docs/code_view.png
http://execv.us/docs/code_view.png
http://execv.us/docs/zoom.png
http://execv.us/docs/zoom.png

Alexandru Totolici
69229045

Implementation Approach

CPSC 533C
Sunday, October 18,2009

The existing viewer works as a mercurial plugin, and so will the proposed solution.
However, the proposed solution will be written in JavaScript/jQuery, and existing parts will also
be rewritten.The current viewer doesn’t work outside Gecko browsers, and ideally support for
all modern WebKit and Gecko browsers will be provided upon completion.

Milestones

The milestones will reflect completion of the major components, which are:

2.

3.

4.

Code collapse / reorder
Path selector
Hierarchy graphing/navigation

Zooming

Previous Work

Tools and papers that serve as inspiration:

e Current Tralfamadore viewer

+ IDE code collapse

« Path Projection

« Ball & Eick, Software Visualization in the Large

I3 November

20 November

27 November

I 1 December

« Jakobsen & Hornbzk, Evaluating a Fisheye View of Source Code

» Hornbzk & Frokjer, Reading Patterns and Usability in Visualization of Electronic Documents

http://livepage.apple.com/
http://livepage.apple.com/

