
Visualizing and Navigating Source Code History
Alex Bradley∗

Department of Computer Science
University of British Columbia

ABSTRACT

We present the Source Code History Navigator, a tool for visualiz-
ing the evolution of source code and comparing many revisions of a
source code file. Our tool provides an overview of the entire history
of a source file through a “history flow”-style visualization in which
revisions are plotted as vertical pixel stripes, with each pixel line in
a stripe corresponding to a line in the revision and coloured accord-
ing to some property of interest (e.g., authorship of the line, dif-
ferences from previous and next revisions, line type, or code age.)
Stripes can be expanded to obtain a detail view showing the en-
tire text of the revision. Many such text viewers can be opened
side-by-side simultaneously, and their scrollbars can be locked to-
gether, facilitating easy comparison of differences across multiple
revisions. We present a detailed usage scenario to demonstrate the
applicability of our tool.

Index Terms: D.2.6 [Software Engineering]: Programming
Environments—Programmer workbench; D.2.7 [Software Engi-
neering]: Distribution, Maintenance, and Enhancement—Version
control

1 INTRODUCTION

Software developers working on large project teams frequently
need to explore the history of the source code with which they are
working. They may wish to gain understanding of important design
decisions that led to the current state of the code, to discover which
developers contributed to the evolution of a given feature, or to de-
termine when, and by whom, malfunctioning code was introduced.
A common way to approach these tasks is to consult previous revi-
sions of relevant source code files stored in a version control system
such as CVS, Subversion or Perforce.

Using current integrated development environments (IDEs) and
revision control GUIs, it is easy for a user to obtain a high-level
overview of the revision control history of a file, in the form of a
list of revisions giving revision numbers, dates, authors and check-
in notes. Current tools also make it easy to compare the text of
two source code files to see what changes occurred. However, the
developer may need to compare several past revisions to gain the
desired understanding of the code’s evolution. Using current tools,
this may require a time-consuming and error-prone process of re-
questing many pairwise comparisons between revisions.

Developers may also want to gain a “big picture” overview of
how the text of a source code file changed over time through all its
revisions. Research prototypes such as CVSscan [19] and the Vi-
sual Code Navigator [11] address this task by providing compact
graphical “stripe” visualizations of code history. Such tools, how-
ever, are not integrated into current IDEs, and do not provide strong
support for detailed textual comparison of many revisions.

We present a tool called the Source Code History Navigator
(SCHN) to address the problems described above. SCHN allows
developers to visualize and navigate the evolution of an individual

∗e-mail: awjb@cs.ubc.ca

source code file. “Stripe” visualizations in the manner of CVSscan
provide a high-level overview of the entire history of the file. Each
stripe can be expanded into a viewer showing the text of a revision.
Many such viewers arranged side-by-side permit easy comparison
of many revisions of a file. SCHN is implemented as an Eclipse
plugin, providing tight integration with a major IDE.

The structure of this paper is as follows. Section 2 reviews work
related to our approach. Section 3 describes the features of SCHN
in detail, and section 4 gives details of the implementation approach
used for its development. Section 5 provides a usage scenario
demonstrating the applicability of our tool. Section 6 discusses the
strengths and weaknesses of our tool and lessons learned during its
development. Section 7 provides directions for future work, and
section 8 concludes.

2 RELATED WORK

We consider related work in the areas of text comparison and soft-
ware evolution visualization (including one paper in the category of
document evolution visualization.) The contribution of our tool lies
in applying some of the strengths of current text comparison GUIs
to many-revision text comparisons and in integrating that text com-
parison capability into a pixel-stripe visualization of source code
history. Our focus+context approach to combining those levels of
overview and detail is somewhat inspired by the Table Lens [14],
in which textual details of spreadsheet rows are interspersed with
compact graphical representations of spreadsheet data.

2.1 Text Comparison GUIs

Many GUI tools exist for text comparison, including Eclipse’s built-
in comparison tools, KDiff3 [5], Beyond Compare [15], Perforce
Visual Client/P4Merge [13], and Araxis Merge [2]. These tools typ-
ically provide two- or three-way file comparison with strong sup-
port for highlighting differences in colour, highlighting character-
by-character differences in a line, linked scrolling of the files being
compared, and visualizing deletions. Three-way comparison is of-
ten targeted at the special case of merging revisions (comparing an
ancestor revision to two conflicting changes.)

2.2 Software and Document Evolution Visualization

The idea of showing code in a compact graphical representation by
converting code lines to pixel lines is well known in the software
visualization literature. The early SeeSoft system created by Ball
and Eick [3] explored the idea of representing large codebases by
showing many files in such a condensed graphical representation
according to various colouring schemes. Subsequent systems such
as Augur [6] and Tarantula [9] built on this idea. Tarantula shows
codebases coloured according to test suite coverage. Augur shows
multiple code files coloured according to properties such as code
age; it also moves towards software evolution visualization, as it
allows users to explore changes in the code over time using a slider.

Showing code evolution through a horizontal sequence of verti-
cal pixel stripes also has roots in multiple previous papers. Viégas et
al. [17] created “history flows”, with lines coloured by authorship,
to visualize Wikipedia edit history. Voinea [18, 19, 20] has explored
the domain of software evolution visualization extensively and has



produced a variety of visualization techniques for exploring the his-
tory of source code files and entire codebases. Voinea’s CVSscan
tool [19] includes a pixel-stripe revision visualization similar to
“history flows”, but incorporates different colouring strategies and
has more sophisticated filtering techniques to accommodate the po-
tentially large size of code files. CVSscan also includes a “details-
on-demand” feature which allows the user to select a single revision
from the flow and view the associated source code. The Visual Code
Navigator of Lommerse et al. [11] incorporates Voinea’s work.

3 SOURCE CODE HISTORY NAVIGATOR

Our proposed solution, the Source Code History Navigator
(SCHN), is based on the information visualization paradigms of
overview+detail and focus+context. An overview of file history is
provided through a graphical display of vertical revision “stripes”.
Double-clicking on any stripe expands it into a detail view showing
the text of the corresponding revision. These detail views can be
seen as areas of “focus”, with the surrounding unexpanded stripes
providing context. The overview+detail paradigm also applies on
the level of the individual source code viewer; the corresponding
stripe remains visible to the right of the viewer and can be used for
quick navigation to any point in the file.

Our solution can also be seen in terms of Tufte’s concept of small
multiples [16]. Revision stripes are essentially a small-multiples
representation of revision history, placing compact representations
of revisions side-by-side to show their evolution over time. A se-
quence of many text viewers placed side by side in the horizontally
scrollable SCHN interface can also be seen as a small multiples dis-
play; the user can make a rapid horizontal scan of many revisions
to detect changes of interest.

3.1 History Flow of Revision Stripes

Following Viégas et al. [17], we adopt the name history flow for
our graphical representation of source code history. A history flow
consists of a sequence of thin vertical bars, each bar corresponding
to one revision. The bars are ordered in ascending or descending
order of revision date (the ordering can be configured by the user.)
In each bar, the horizontal pixel line n pixels distant from the top
edge of the bar corresponds to the n-th line of the text of the re-
vision. Each pixel line can be assigned a colour according to one
of several colouring schemes, as described in section 3.1.1. Above
each revision stripe is a gold cylinder icon. As this is the same icon
used to represent individual revisions in the Eclipse IDE’s History
view, it serves as a hint to Eclipse users that each stripe represents
a revision. Hovering over this icon with the mouse will reveal a
tooltip displaying the revision number, author, date and check-in
note (see Figure 1.) Black marker lines divide the revision icons
into groups of five, allowing the user to use the line of icons as a
simple measurement device.

Figure 1: Closeup of the top of a SCHN history flow. Mousing over a
revision icon reveals a tooltip with revision information. Black markers
every five revisions allow the user to use the line of icons as a simple
measurement device.

3.1.1 Colouring Schemes

SCHN currently provides the following revision stripe colouring
schemes. The user can switch between schemes using a menu.

Differences from next and previous revisions. In this
scheme, the differences between each revision and the revisions im-
mediately preceding and following it are computed. Lines where a
revision differs from its neighbours are marked in light grey. When
the user mouses over a revision stripe, the differences between that
revision and its neighbours are displayed using the three-colour
“Dark2” qualitative colour palette from ColorBrewer [7]. Lines
where the revision differs from only its previous neighbour, or only
its next neighbour, are coloured blue or green. Lines where the revi-
sion differs from both neighbours are coloured orange. An example
of this colouring scheme can be seen in Figure 2.

Line authorship. In this scheme, each author who has sub-
mitted a revision is assigned a colour from the nine-colour “Set1”
qualitative colour palette from ColorBrewer. (If there are more than
nine distinct authors, the same colour will be assigned to multiple
authors.) Each line in a revision stripe is then assigned the colour
representing the last author who modified that line. An example of
this colouring scheme is shown in Figure 3.

Line type. In this scheme, lines are coloured according to Java
line type using a simple transformation of the standard Eclipse
colouring scheme. (SCHN currently only processes Java files, al-
though it can in principle be extended to handle any type of source
code file.) The colour assigned to a line is the colour that would
be assigned to the first non-whitespace character in the line us-
ing Eclipse Java syntax highlighting. For example, lines beginning
with keywords such as import, class, public, if, etc. are
coloured purple, Javadoc comments are coloured light blue, non-
Javadoc comments are coloured green, lines beginning with method
calls are coloured black, etc. An example of this colouring scheme
is shown in Figure 4.

Figure 4: A SCHN history flow in which revision stripes are coloured
by Java line type.

Code age. In this colouring scheme, each line in a revision
stripe is coloured according to the number of revisions that have
elapsed since that line was last modified. The colours are selected
from the eight-colour YlOrBr sequential colour palette from Color-
Brewer. A line that was modified in the current revision is coloured
off-white. A line that was modified n revisions ago (n ≤ 7) is as-
signed the n-th subsequent colour in the palette. Lines that were
modified seven or more revisions ago are assigned the last colour in
the palette (dark brown.) Intuitively, this scheme can be described



Figure 2: A SCHN history flow coloured to show the differences between revisions and their neighbours. The second revision has been selected
through mouse-over. Differences between the first and second revision are shown in blue; differences between the second and third revisions
are shown in green. Lines where the second revision differs from both the third and first revisions are coloured orange. Differences in other
revisions are shown in light grey.

as one in which code blocks start out “white hot”, then “cool down”
over time through progressively darker shades of orange to brown.
An example of this colouring scheme is shown in Figure 5.

3.2 Revision Source Code Viewers

Double-clicking on a revision stripe in the history flow expands it
into a source code viewer. (See Figure 6 for an example.) The
viewer is scrolled to display the line corresponding to the pixel
on which the user double-clicked. The background of each line
in the source code viewer is coloured according to a transforma-
tion of the colouring scheme that is applied to the stripes. The
transformation applied (for the sake of text legibility) is an alpha
blend against a white background (α = 0.3). (For the neighbour-
differences colouring, the same mouseover behaviour applies to the
text viewers as to the stripes.) Eclipse Java syntax highlighting
is applied to the source code in the viewer. The number, author
and date of the revision are displayed in a label above the viewer,
and the revision check-in note is displayed in a text field below the
viewer. (This text field can be suppressed if the user desires more
vertical viewing space.)

The corresponding revision stripe remains visible to the right of
an expanded source code viewer and acts as an overview of the
file and a navigation aid. A black rectangle in the revision stripe

shows the location in the overall revision text of the area currently
displayed in the text viewer. Clicking or dragging in the revision
stripe scrolls the revision text viewer accordingly.

The horizontal and vertical scrollbars of all opened revision text
viewers can be locked together for easier comparison of multiple
revisions. When scrollbars are locked, scrolling one viewer ver-
tically will automatically scroll all other viewers so that matching
lines (according to the computed differences between revisions) are
side-by-side. Scrolling one viewer horizontally will scroll all other
viewers by the same offset.

A resize handle to the right of a source code viewer-stripe pair
allows the viewer to be resized horizontally to suit the user’s con-
venience. Double-clicking on the handle resizes the viewer to the
length of the longest line in the revision.

The user interface provides options to expand and collapse all
viewers and to hide stripes that do not currently have viewers open.
It is also possible to increase and decrease the font size of the text
in the viewers. Selecting a small font size (e.g., 4pt) can be seen
as providing a mid-level overview, more condensed than full-size
text but less condensed than the one-line-per-pixel stripe overview
representation.



Figure 3: A SCHN history flow in which revision stripes are coloured to show the last author who revised each line.

4 IMPLEMENTATION APPROACH

SCHN is implemented as an Eclipse plugin using the Java SWT
graphics library. SCHN uses an Eclipse extension point to add an
“Explore history. . . ” menu item to the context menu for Java files,
allowing the user to select Java files in the IDE’s Package Explorer
view for analysis with SCHN. Clicking this menu item displays a
new Eclipse view showing the SCHN user interface.

SCHN leverages several Eclipse libraries to provide vari-
ous features. Java syntax highlighting is provided by Eclipse
JDT, and CVS repository access uses Eclipse’s internal CVS li-
brary. Differences between revisions are computed using Eclipse’s
RangeDifferencer library [1], which implements the compar-
ison algorithm of Miller et al. [12].

Eclipse JDT syntax highlighting is also exploited to provide the
Java line type revision stripe colouring. This colouring is computed
by examining the foreground colours of the initial non-whitespace
characters in each line in the corresponding source code viewers.
(Source code viewers are always initialized, even when they are not
visible.)

As previously mentioned, colour palettes were generated us-
ing ColorBrewer [7]. Colours were checked for suitability for the
colour-blind using Vischeck [4].

5 USAGE SCENARIO

A usage scenario based on exploring the history of a source code file
for the JQuery [8] project demonstrates how SCHN might be useful
to a developer. We will call the three actual JQuery developers
involved in this example A, B, and C.

Suppose that Alice, a new developer on the JQuery project, is
finding that some of the extension points for the JQuery Eclipse
plugin do not function as desired. (Extension points allow Eclipse
plugin developers to extend plugins provided by others through a
well-defined interface.) Knowing that some configuration of exten-
sion points takes place in JQueryBackendPlugin.java, she
wants to explore the history of this file to determine which devel-
opers introduced certain extension points.

She begins by opening SCHN on the file and selecting authorship
colouring (see Figure 3.) Extension point definitions are located
near the end of the file (at the location of the lowest yellow and
green lines in the rightmost vertical stripe.) Expanding viewers for
the current revision, 1.57, and the previous revision, she can see
that the predicates extension point was added by user A (the author
assigned the green colour) in the previous revision. She can confirm
this fact by expanding a viewer for revision 1.55 and selecting the
differences-from-neighbours colouring scheme.

She next notes that another extension point is coloured yel-
low. She select authorship colouring and follows the yellow-
coloured blocks from revision 1.55 back to revision 1.49. By us-



Figure 6: SCHN revision text viewers, coloured according to differences between the center revision and its neighbours.

Figure 5: A SCHN history flow in which revision stripes are coloured
by code age.

ing differences-from-neighbours colouring, she can confirm that the
“include rules” extension point was introduced in revision 1.49 by
user B (the author assigned the yellow colour.)

The authorship trail is no longer useful after this point because
the remaining extension points are coloured orange, and the author
assigned orange (user C) did most of the work on the file. However,
Alice would like to find out where the remaining extension points
were introduced. She decides to use code age colouring, uses the

“expand all” UI feature to expand all text viewers, and uses the
“lock scrollbars” feature to ensure all text viewers are scrolled to
the location in the file where extension points are defined. She then
starts at revision 1.49 and scrolls rapidly to the left. As long as the
viewers she sees have a dark brown background colour, she knows
that no changes to the code block are occurring and keeps scrolling.
As the background colours start to become lighter, she knows a
change is approaching and slows down. After scrolling to the left
in this manner for many revisions, she discovers that the code block
containing extension points was initially introduced by user C in
revision 1.13 (see Figure 7.)

At this point, Alice knows which developers were responsible for
adding all the extension points in the plugin. She can consult them
to determine how to fix the problems with the extension points of
concern.

6 DISCUSSION

In this section, we evaluate the strengths and limitations of our tool
and discuss some lessons learned during its development.

6.1 Strengths
We believe the strengths of SCHN include the following:

• Tight integration with a major IDE. Since SCHN is imple-
mented as an Eclipse plugin, developers using Eclipse on a
CVS codebase can install the plugin and immediately apply it
to their code without any extra processing steps.

• Revision stripe colourings provide useful insights into
code evolution. All of our colourings provide information
about the full revision history of the code that would be diffi-
cult to ascertain with traditional techniques such as scanning
a textual list of revision summaries or performing pairwise
comparisons. The authorship and code age colourings even
provide information about individual revisions that would be



Figure 7: An illustration of our usage scenario. By scrolling through the revisions using the code age colouring, Alice discovers that certain
extension points first appeared in revision 1.13.

extremely laborious to calculate manually from pairwise revi-
sion comparisons.

• Revision stripe colouring choices are grounded in previous
work. The authorship, neighbour-differences and line type
colourings are based on those used by Voinea et al. [19] and
Lommerse et al. [11]. The code age colouring was inspired
by SeeSoft (cf. [3], figure 3.)

• Revision text viewer navigation is linked to the revision
stripe on the right, which serves as an overview of the revi-
sion text and a fast navigation tool. Placing the revision stripe
on the right builds on the Eclipse IDE’s standard practice of
providing annotations to the right of a text editor.

• Allowing the user to lock the horizontal and vertical scroll-
bars of all revision text viewers is very useful for many-
revision comparisons, as all the revisions displayed can be
instantly aligned at a point of interest. Changes can then be
found through rapid horizontal scrolling, which effectively
creates an animation of the evolution of the file over time in
which changes can be spotted through the ability of the human
visual system to detect small alterations in a mostly static im-
age.

6.2 Limitations
Some of the limitations of SCHN are as follows:

• It can be difficult to see the correspondence between indi-
vidual difference blocks in the neighbour differences view.
Since all the difference blocks for a given pair of neighbouring
revision stripes are assigned the same colour on mouseover, it
can be difficult to see which correspond to which. It can also
be difficult to see where deletions occurred.

• The scale of the revision stripes is not always appropriate.
Revision stripes are currently constructed according to a sim-
ple “one code line = one pixel line” rule. For very long files,
this may result in stripes that are too tall to display in their
entirety with the available screen real estate. For short files,
the revision stripes may only occupy a small fraction of the
available screen real estate.

• Clear legends are not provided for the colours used. Users
must currently rely on their intuition to determine the mean-
ing of the colours used in each colouring. However, it is pos-
sible users might misunderstand the intended meaning of the
colours. For the authorship view, users must currently work to
determine which colour corresponds to which author by trac-
ing coloured lines back to the revision where they start. A
legend describing the precise meaning of colours used would
facilitate user comprehension of our visualizations.

• Performance is slow at certain key points. There can be a
significant startup delay while SCHN downloads large num-
bers of revisions from CVS, and no progress indicator is pro-



vided to the user during this time. Certain graphical rendering
tasks (e.g., resizing, expanding and collapsing viewers) have
a noticeable lag, which would probably be irritating for users.

• Screen real estate tightly limits the number of revision text
viewers that can be displayed simultaneously. This is an
inherent limitation of our approach. Using the normal font
size, it is not feasible to show more than three revision text
viewers side by side simultaneously on a 1280×1024 display.
Using a reduced font size, it may be possible to squeeze in
four viewers. We work around this limitation by permitting
horizontal scrolling, which is quite effective in permitting at
least some types of comparisons between many more revision
text viewers than can fit on the screen (see section 6.1.)

6.3 Lessons Learned
One lesson learned during the development of our project was that
one of the views we originally proposed did not work well. In
our original proposal, we considered displaying revision text view-
ers in a 2× n grid (see Figure 8). We implemented this view, but
found that its benefit compared to horizontally scrollable side-by-
side viewers was outweighed by its disadvantages. The grid view
does provide a way to compare four, rather than three, revisions at
normal font size simultaneously, albeit with smaller vertical viewer
size. However, we found our comparison tasks often necessitated
comparing more than three or four revisions quickly, and in contrast
to the ease of comparison provided by quickly scrolling through
side-by-side views with a linear visual scan (see section 6.1), the
grid view required a less comfortable and efficient zigzagging scan
pattern. Furthermore, the grid view did not fit cleanly into our dom-
inant UI metaphor of a horizontal flow of revisions in which revi-
sion text viewers could be interspersed in a focus+context style.
We therefore decided to omit it from the final implementation of
our tool.

Figure 8: 2× n “grid view” concept, which we ultimately decided not
to use in our final implementation.

Another lesson learned is that colour selection can be tricky.
When designing our differences-from-neighbours colouring, we
had a strong intuition that corresponding difference blocks in ad-
jacent revision stripes should be the same colour. We initially pro-
duced a design (see Figure 9) in which all revision stripes were
coloured, using a palette of three colours for one-way differences
and orange for two-way differences. (We picked three colours be-
cause three was the minimum number of colours we could employ
without creating confusion by having the same colour indicate dif-
ferences in different directions for the same revision stripe.) How-
ever, feedback received for this design indicated that this colouring

scheme created a strong likelihood that the user would see spurious
patterns in the stripes, intuitively perceiving nonexistent connec-
tions between distant revisions because of the strong visual cues
provided by their identical colours.

Figure 9: An earlier version of our differences-from-neighbours
colouring, which we rejected because of spurious colour correspon-
dences between distant revisions.

We therefore adopted the strategy we currently use, in which
all but the moused-over revision and its neighbours have their dif-
ferences greyed out. In our first attempt at this strategy, we used
the standard SWT “dark grey” colour. We discovered, to our cha-
grin, that this colour was indistinguishable from pink under the Vis-
check [4] deuteranope simulation. We therefore decreased the satu-
ration of our grey colour. In our current colouring scheme, the green
or blue colours still reduce to dark grey in deuteranope or tritanope
colour-blindness simulations (respectively), but are distinguishable
from light grey by saturation.

7 FUTURE WORK

SCHN provides many opportunities for future exploration. We con-
sider some directions for future work in the areas of better support
for the domains of software engineering and version control; better
visualization techniques; efficiency improvements; and validation.

7.1 Domain Support

We could make our tool more generally useful by providing syntax
highlighting support for a wider variety of programming languages
and file types. We could also support version control systems other
than CVS, such as Subversion or Perforce, and take into account
advanced version control features such as branching.

7.2 Visualization Techniques

We could improve the visualization techniques used in our tool to
address some of the limitations outlined in section 6.2:

• To address the problem of identifying corresponding differ-
ence blocks, we could implement a feature which allowed
users to highlight corresponding neighbour differences for a
particular block when they moused over it.

• Scaling techniques for revision stripes could be explored.
Scaling small stripes up would be relatively straightforward;
however, scaling large stripes down would require merging



the colours of some pixel lines. The position-based antialias-
ing algorithm of Voinea et al. [19] could be considered for this
purpose.

• Legends would be fairly simple to provide, possibly through
a small popup window which the user could enable if needed.

Our textual file comparison views could be improved by provid-
ing character-by-character comparison of corresponding lines, to
match the functionality provided by most existing text comparison
GUIs. We could also explore different colouring strategies for our
revision stripes, such as indicating the bug-fix/feature enhancement
requests or task contexts (in the Mylar/Mylyn [10] sense) associ-
ated with a line of code. We could allow other developers to pro-
vide colouring strategies of their own through an Eclipse extension
point.

7.3 Efficiency
The efficiency of SCHN could be improved significantly by caching
retrieved CVS revisions so that future SCHN analyses of the same
file did not require further unnecessary CVS requests. This im-
provement would also make SCHN a friendlier player in real-world
development environments by reducing the load it places on CVS
servers.

Techniques for optimizing the rendering of our UI could also be
explored to reduce the lag in performing certain operations.

7.4 Validation
An important direction for future work would be releasing SCHN
for real-world use, collecting user feedback, and conducting user
studies. These steps would give us insight into any usability flaws
in our tool and other features desired by users. We can also test
our tool on real-world codebases other than JQuery to observe its
usability and performance.

8 CONCLUSION

We have presented the Source Code History Navigator (SCHN), a
tool for navigating and querying the revision history of a source
code file. SCHN provides a high-level overview of all code revi-
sions using a history flow of revision stripes, which are coloured
according to various schemes, including differences from neigh-
bour revisions, line authorship, line type, and code age. Revision
stripes can be expanded to show viewers for the text of a revision,
providing a focus+context interaction style. Revision text viewer
scrollbar locking and horizontal scrolling through revision viewers
provide a powerful technique for many-revision text comparisons.
We demonstrate through a usage scenario that SCHN has the poten-
tial to permit exploration of code history in ways not well supported
by current tools.

ACKNOWLEDGEMENTS

Early comments and a CVSscan demonstration by Rolf Biehn con-
tributed to the development of this work. Comments and feedback
from Tamara Munzner were highly influential in shaping the direc-
tion of this project. This work was partly supported by an NSERC
CGS M.

REFERENCES

[1] Eclipse Platform Plug-in Developer Guide: Class RangeD-
ifferencer, 2006. http://help.eclipse.org/help32/topic/org.ec-
lipse.platform.doc.isv/reference/api/org/eclipse/compare/rangediffer-
encer/RangeDifferencer.html.

[2] Araxis Ltd. Araxis Merge, 2009. http://www.araxis.com/merge-
overview.html.

[3] T. Ball and S. G. Eick. Software visualization in the large. Computer,
29(4):33–43, 1996.

[4] B. Dougherty and A. Wade. Vischeck, 2009.
http://www.vischeck.com/vischeck/.

[5] J. Eibl. KDiff3, March 2009. http://kdiff3.sourceforge.net/.
[6] J. Froehlich and P. Dourish. Unifying artifacts and activities in a visual

tool for distributed software development teams. In ICSE, pages 387–
396, 2004.

[7] M. Harrower and C. A. Brewer. ColorBrewer.org: an online tool
for selecting colour schemes for maps. The Cartographic Journal,
40(1):27–37, June 2003.

[8] D. Janzen and K. De Volder. Navigating and querying code with-
out getting lost. In AOSD ’03: Proceedings of the 2nd international
conference on Aspect-oriented software development, pages 178–187,
New York, NY, USA, 2003. ACM.

[9] J. A. Jones, M. J. Harrold, and J. T. Stasko. Visualization of test infor-
mation to assist fault localization. In ICSE, pages 467–477, 2002.

[10] M. Kersten and G. C. Murphy. Mylar: a degree-of-interest model for
IDEs. In AOSD, pages 159–168, 2005.

[11] G. Lommerse, F. Nossin, L. Voinea, and A. Telea. The visual code
navigator: An interactive toolset for source code investigation. In IN-
FOVIS ’05: Proceedings of the 2005 IEEE Symposium on Information
Visualization, page 4, Washington, DC, USA, 2005. IEEE Computer
Society.

[12] W. Miller and E. W. Myers. A file comparison program. Softw., Pract.
Exper., 15(11):1025–1040, 1985.

[13] Perforce Software. Perforce visual client, 2009.
http://www.perforce.com/perforce/products/p4v.html.

[14] R. Rao and S. K. Card. The table lens: merging graphical and sym-
bolic representations in an interactive focus + context visualization for
tabular information. In CHI ’94: Proceedings of the SIGCHI confer-
ence on Human factors in computing systems, pages 318–322, New
York, NY, USA, 1994. ACM.

[15] Scooter Software, Inc. Beyond Compare, 2009.
http://www.scootersoftware.com/.

[16] E. R. Tufte. Envisioning Information. Graphics Press, Cheshire, CT,
USA, 1990.

[17] F. B. Viégas, M. Wattenberg, and K. Dave. Studying cooperation and
conflict between authors with history flow visualizations. In CHI ’04:
Proceedings of the SIGCHI conference on Human factors in comput-
ing systems, pages 575–582, New York, NY, USA, 2004. ACM.

[18] L. Voinea and A. Telea. Visual querying and analysis of large software
repositories. Empirical Software Engineering, 14(3):316–340, 2009.

[19] L. Voinea, A. Telea, and J. J. van Wijk. CVSscan: visualization of
code evolution. In SoftVis ’05: Proceedings of the 2005 ACM sym-
posium on Software visualization, pages 47–56, New York, NY, USA,
2005. ACM.

[20] S. L. Voinea. Software Evolution Visualization. PhD thesis, Technis-
che Universiteit Eindhoven, 2007.


