
A Source Code History Navigator

Alexander Bradley (awjb@cs.ubc.ca)

CPSC 533C Project Proposal
University of British Columbia

October 30, 2009



1 Problem Description

This project will address a problem drawn from the domain of software engineering: visualizing
the history of source code. To gain understanding of the decisions and developmental steps that
led to the current state of a piece of source code, a developer may need to consult several previous
revisions of the code using a revision control system such as CVS. Current integrated development
environments (IDEs) such as Eclipse make it easy to compare two revisions of a source code file.
However, the developer may need to compare several past revisions to gain the desired understand-
ing of the code’s evolution. Many-revision comparison is not, to my knowledge, well supported
by current IDEs. Research in software visualization systems has explored some techniques for
displaying software evolution, and I hope to build on these existing approaches.

Any codebase with a significant revision history (and probably, though not necessarily, multiple
contributors) is a potential dataset for this project. A particular dataset I may use is the open-source
JQuery project from the UBC Software Practices Lab, with which I have some past experience as
a developer.

2 Personal Expertise

I have 20 months of employment experience (16 co-op, 4 as an undergraduate RA) in software de-
velopment positions. I am familiar with the Eclipse IDE and revision control systems such as CVS,
Subversion and Perforce. The problem addressed in this project is one I personally encountered in
some of my development work.

I have some experience developing GUIs using the Swing toolkit for Java. I have little experi-
ence developing GUIs directly with SWT, although I have some experience using SWT indirectly
during Eclipse plugin development.

3 Proposed Solution

For my proposed solution to this problem, I am considering some variations on a small multiples
approach. In its simplest form, this approach would display several revisions of the same file side
by side (see Figure 1) or in a grid (Figure 2). The available screen real estate on current monitors
would probably make it difficult to display more than three legible code panes horizontally and
two panes vertically, but scroll bars could be used to permit access to a larger virtual space of code
panes. (I envision the side-by-side display scrolling horizontally and the grid display scrolling
vertically.) Each code pane could incorporate additional visual and textual information of use to
the developer, e.g. marginal hints regarding the locations of differences, revision notes, revision
numbers and authors, or source code colouring showing code age, statement type or authorship.

I am also considering a more complex focus+context visualization (see Figure 3) which incor-
porates elements of the TableLens of Rao and Card [2] and the “evolution view” from the Visual
Code Navigator (VCN) of Lommerse et al. [1]. As in VCN, file revisions would be displayed as
a “flow” of vertical stripes of pixels, with each horizontal pixel line in the stripe representing one
or more lines of code from the revision. The horizontal pixel lines could be coloured according
to code age, code authorship, etc. (see Figure 8 in [1] for examples.) At a few points, code panes
showing the actual text of code from particular revisions could be embedded in the flow immedi-
ately to the right of the pixel stripes for those revisions. A black rectangle to the left of a code pane

1



could indicate where the code shown in the pane was located in the pixel-stripe representation of
that revision. The lines of code in the pane could have a similar background colour scheme to the
pixel stripe, to further emphasize the connection between the panes and the flow. The user would
be able to move the panes to focus on different revisions, perhaps by dragging them or selecting
revision stripes with the mouse.

The three visualizations described above would probably be useful in different and comple-
mentary ways. The focus+context view could be used to assess the overall patterns of evolution
in the code and pick revisions of interest. The two small multiples views could be used for more
detailed code comparison between selected revisions of interest.

Ideally, this system would be integrated with an IDE (e.g., as an Eclipse plugin), but this will
not be considered an essential aspect of this course project. I will investigate Eclipse integration if
I have extra time.

This tool will tentatively be called the Source Code History Navigator (SCHN).

Figure 1: Side-by-side small multiples display (mockup).

4 Usage Scenario

A developer has discovered buggy code in source file AnalyticalEngine.java and wants to
explore the file’s history. The developer opens the file in SCHN. Initially, the focus+context view
of the revision history is displayed with some arbitrarily selected code panes. The developer selects
colouring by authorship and moves the code panes to points where significant changes seem to have
occurred. The developer selects four interesting revisions and displays them in the grid view. After
detailed comparison of the revisions, the developer might conclude that the code causing a buggy
behaviour was introduced by user menabrea in revision 31 and significantly modified by users
alovelace in revision 45 and cbabbage in revision 60. The developer might then contact those
users to discuss the impact of a possible bug fix.

5 Implementation Approach

I plan to implement this system in Java using either Swing or Eclipse SWT. I am more familiar
with using Swing for GUI development. However, using SWT would make subsequent integration

2



Figure 2: Grid small multiples display (mockup).

Figure 3: Historical evolution view with embedded code panes (sketch).

3



of my system as an Eclipse plugin easier, and might also permit me to reuse source code display
components from Eclipse. My system will probably be designed to interact with the CVS revision
control system.

6 Schedule

A tentative schedule for this project is as follows:

Friday, November 6: Development environment set up. Prototype should be
capable of accessing CVS repository and downloading
code. Small-multiples prototype started.

Monday, November 16: Prototype of small-multiples views complete.
Prototype of focus+context view started.

Monday/Wednesday, November 16/18: Project update presentation.
Friday, November 27: Prototypes of all views complete.
Thursday, December 10: Final implementation complete.

Final presentation and report drafted.
Monday, December 14: Final project presentations.
Wednesday, December 16: Final report submitted.

7 Related Work

The code evolution “flow” visualization used in this project has its roots in a number of prior
systems. Early work by Ball and Eick [3] explored the idea of representing large amounts of
code by condensing source code lines to single-pixel horizontal line representations. The “flow”
approach considered above was inspired by the “history flows” created by Viégas et al. [3] to
visualize Wikipedia edit history. Voinea [4, 5, 6] has explored the domain of software evolution
visualization extensively and has produced a variety of visualization techniques for exploring the
history of source code files and entire codebases. The Visual Code Navigator [1] mentioned earlier
incorporates his work. Voinea’s CVSscan tool [5] includes a pixel-stripe revision visualization
similar to “history flows”, but has more sophisticated filtering techniques to accommodate the
potentially large size of code files. CVSscan also includes a “details-on-demand” feature which
allows the user to select a single revision from the flow and view the associated source code.

References

[1] G. Lommerse, F. Nossin, L. Voinea, and A. Telea. The visual code navigator: An interactive
toolset for source code investigation. In INFOVIS ’05: Proceedings of the 2005 IEEE Sym-
posium on Information Visualization, page 4, Washington, DC, USA, 2005. IEEE Computer
Society.

[2] R. Rao and S. K. Card. The table lens: merging graphical and symbolic representations in an
interactive focus + context visualization for tabular information. In CHI ’94: Proceedings of
the SIGCHI conference on Human factors in computing systems, pages 318–322, New York,
NY, USA, 1994. ACM.

4



[3] F. B. Viégas, M. Wattenberg, and K. Dave. Studying cooperation and conflict between authors
with history flow visualizations. In CHI ’04: Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 575–582, New York, NY, USA, 2004. ACM.

[4] L. Voinea and A. Telea. Visual querying and analysis of large software repositories. Empirical
Software Engineering, 14(3):316–340, 2009.

[5] L. Voinea, A. Telea, and J. J. van Wijk. CVSscan: visualization of code evolution. In SoftVis
’05: Proceedings of the 2005 ACM symposium on Software visualization, pages 47–56, New
York, NY, USA, 2005. ACM.

[6] S. L. Voinea. Software Evolution Visualization. PhD thesis, Technische Universiteit Eind-
hoven, 2007.

5


