A visualization tool for geographic information of NTP servers

Jonatan Schroeder
University of British Columbia
Nov 14, 2007

Outline

1. Domain Description
2. Proposed Solution
3. Project Update
4. Conclusion

Domain Description

- NTP - Network Time Protocol
- Self-organized network
- Frequent exchange of messages

NTP Survey

- NTP survey in 2005
- Data collection and analysis
- http://www.ntpsurvey.arauc.br
- 1,290,819 unique addresses found
- 147,251 complete responses

Available data

- For each server:
 - IP address
 - System information
 - Stratum and source of time information
 - Delay, dispersion, jitter, clock stability
- For each association:
 - Source and destination addresses
 - Stratum
 - Delay, dispersion, jitter, offset

Tasks

- Overall visualization of the geographic topology
- Deficient NTP servers identification
- Geographic topology and deficient NTP servers identification in a specific geographic region
- Geographic topology and deficient NTP servers identification in a specific IP range

Main Window

- Map of the region in focus
- Rectangle for each subregion
- Colour: variable in focus (delay, dispersion, etc.)
- Size: number of servers
- Bottom: Histogram
 - Colour and X-axis: variable in focus
 - Y-axis: number of servers

Main Window - in progress

Detailed View of a Server

- Sources of time information
- Focus on used source

Implementation Approach

- Java2D, Swing
- Maps using GIS boundary information
- Location using GeoLiteCity

What is done

- Geographic visualization
- Zoom and pan with animation
- Organization of NTP servers data
- Datafile with NTP servers data and location information

Next steps

- Color-coding of regions
- Grouping data per continent (at least for Europe)
- Labeling
- Histogram
- Improvement in linking and representation of servers per region
- Detailed view of a server
- Range selection
- Some processing time issues

A visualization tool for geographic information of NTP servers

Jonatan Schroeder
University of British Columbia
Nov 14, 2007