MotionVis

Donovan Parks

Introduction

 Large motion capture DB's widely used in the film and video game industries

- This has created a desire to be able to search these databases for similar motions
- Bases of automated methods for synthesizing new motions from MoCap data

Project Goal

- Numerous similarity metrics have been proposed:
 - Which of these should be preferred?
 - What are their respective strengths and weaknesses?
 - How can a given metric be improved?
- Develop an environment for analyzing the structure of a motion capture DB under a given similarity metric

Project Overview

Proposed Solution

 Couple scatterplot view with a "details-ondemand" view

Remaining Work

- Tighter coupling between views:
 - Clicking a skeleton should highlight associated point in scatterplot
 - Hovering over a point should highlight associated row and column in dissimilarity matrix
- Select "good" colours for skeletons
- Plus the other 10 items on my to-do list

Literature

Implemented similarity metric:

 Chuanjun Li and B. Prabhakaran. Indexing of motion capture data for efficient and fast similarity search, 2006.

Other similarity metrics:

- Lucas Kovar and Michael Gleicher. Automated extraction and parameterization of motions in large data sets. ACM Trans. Graph., 23(3):559568, 2004.
- Meinard Müller, Tido Röder, and Michael Clausen.
 Efficient content-based retrieval of motion capture data. ACM Trans. Graph., 24(3):677685, 2005.

o Related InfoVis papers:

- Chris Roussin Rich DeJordy, Stephen P. Borgatti and Daniel S. Halgin. Visualizing proximity data, 2007.
- Jonathan C. Roberts. State of the art: coordinated and multiple views in exploratory visualization. Proc. Conference on Coordinated and Multiple Views in Exploratory Visualization, 2007.