
University of British Columbia
CPSC 314 Computer Graphics

May-June 2005

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005

Sampling, Virtual Trackball, Hidden
Surfaces

Week 5, Tue Jun 7

�

News

� Midterm handed back
� solutions posted
� distribution posted
� all grades so far posted

� P1 Hall of Fame posted
� P3 grading

� after 3:20
� P4 proposals

� email or conversation to all

�

H3 Corrections/Clarifications

� Q1 should be from +infinity, not -infinity
� Q 2-4 correction for point B
� Q7 clarified: only x and y coordinates are

given for P
� Q8 is deleted

�

Review: Texture Coordinates

� texture image: 2D array of color values (texels)
� assigning texture coordinates (s,t) at vertex with

object coordinates (x,y,z,w)
� use interpolated (s,t) for texel lookup at each pixel
� use value to modify a polygon’s color

� or other surface property

� specified by programmer or artist glTexCoord2f(s,t)
glVertexf(x,y,z,w)

�

glTexCoord2d(1, 1);
glVertex3d (x, y, z);

(1,0)

(0,0) (0,1)

(1,1)

Review: Tiled Texture Map

glTexCoord2d(4, 4);
glVertex3d (x, y, z);

(4,4)(4,0)

(0,4)(0,0)

�

Review: Fractional Texture Coordinates

(0,0) (1,0)

(0,1) (1,1)

(0,0) (.25,0)

(0,.5) (.25,.5)

texture
image

�

Review: Texture

� action when s or t is outside [0…1] interval
� tiling
� clamping

� functions
� replace/decal
� modulate
� blend

� texture matrix stack
glMatrixMode(GL_TEXTURE);

�

Review: Basic OpenGL Texturing

� setup
� generate identifier: glGenTextures
� load image data: glTexImage2D
� set texture parameters (tile/clamp/...):
glTexParameteri

� set texture drawing mode (modulate/replace/...):
glTexEnvf

� drawing
� enable: glEnable
� bind specific texture: glBindTexture
� specify texture coordinates before each vertex:
glTexCoord2f

�

Review: Perspective Correct Interpolation

� screen space interpolation incorrect

P1(x,y,z)

V0(x’,y’)

V1(x’,y’)

P0(x,y,z)

210

221100

///
///

www
wswsws

s
γβα

γβα
++

⋅+⋅+⋅=

	

Review: Reconstruction

� how to deal with:
� pixels that are much larger than texels?

� apply filtering, “averaging”

� pixels that are much smaller than texels ?
� interpolate

		

Review: MIPmapping

� image pyramid, precompute averaged versions

Without MIPWithout MIP--mappingmapping

With MIPWith MIP--mappingmapping

	�

Review: Bump Mapping: Normals As Texture

� create illusion of complex
geometry model

� control shape effect by
locally perturbing surface
normal

	�

Review: Environment Mapping

� cheap way to achieve reflective effect
� generate image of surrounding
� map to object as texture

	�

Review: Sphere Mapping

� texture is distorted fish-eye view
� point camera at mirrored sphere
� spherical texture coordinates

	�

Review: Cube Mapping

� 6 planar textures, sides of cube
� point camera outwards to 6 faces

� use largest magnitude of vector to pick face
� other two coordinates for (s,t) texel location

	�

Review: Volumetric Texture
� define texture pattern

over 3D domain - 3D
space containing the
object
� texture function can be

digitized or procedural
� for each point on object

compute texture from
point location in space

� 3D function ρ(x,y,z)

	�

Review: Perlin Noise: Procedural Textures

function marble(point)

x = point.x + turbulence(point);

return marble_color(sin(x))

	�

Review: Perlin Noise

� coherency: smooth not abrupt changes
� turbulence: multiple feature sizes

	�

Review: Generating Coherent Noise

� just three main ideas
� nice interpolation
� use vector offsets to make grid irregular
� optimization

� sneaky use of 1D arrays instead of 2D/3D one

�

Review: Procedural Modeling

� textures, geometry
� nonprocedural: explicitly stored in memory

� procedural approach
� compute something on the fly

� not load from disk
� often less memory cost
� visual richness

� adaptable precision

� noise, fractals, particle systems

�	

Review: Language-Based Generation

� L-Systems
� F: forward, R: right, L: left
� Koch snowflake:

F = FLFRRFLF
� Mariano’s Bush:

F=FF-[-F+F+F]+[+F-F-F]
� angle 16

http://spanky.triumf.ca/www/fractint/lsys/plants.html

��

Correction/Review: Fractal Terrain

� 1D: midpoint displacement
� divide in half, randomly displace
� scale variance by half

� 2D: diamond-square
� generate new value at midpoint
� average corner values + random displacement

� scale variance by half each time

http://www.gameprogrammer.com/fractal.html

��

Review: Particle Systems

� changeable/fluid stuff
� fire, steam, smoke, water, grass, hair, dust,

waterfalls, fireworks, explosions, flocks
� life cycle

� generation, dynamics, death
� rendering tricks

� avoid hidden surface computations

��

Sampling

��

Samples

� most things in the real world are continuous
� everything in a computer is discrete
� the process of mapping a continuous function to a

discrete one is called sampling
� the process of mapping a discrete function to a

continuous one is called reconstruction
� the process of mapping a continuous variable to a

discrete one is called quantization
� rendering an image requires sampling and

quantization
� displaying an image involves reconstruction

��

Line Segments

� we tried to sample a line segment so it would
map to a 2D raster display

� we quantized the pixel values to 0 or 1
� we saw stair steps, or jaggies

��

Line Segments

� instead, quantize to many shades
� but what sampling algorithm is used?

��

Unweighted Area Sampling

� shade pixels wrt area covered by thickened line
� equal areas cause equal intensity, regardless of

distance from pixel center to area
� rough approximation formulated by dividing each pixel

into a finer grid of pixels

� primitive cannot affect intensity of pixel if it does not
intersect the pixel

��

Weighted Area Sampling

� intuitively, pixel cut through the center should be
more heavily weighted than one cut along corner

� weighting function, W(x,y)
� specifies the contribution of primitive passing through

the point (x, y) from pixel center

x

Intensity
W(x,y)

�

Images

� an image is a 2D function �(x, y) that
specifies intensity for each point (x, y)

�	

Image Sampling and Reconstruction

� convert continuous image to discrete set of
samples

� display hardware reconstructs samples into
continuous image
� finite sized source of light for each pixel

discrete input values continuous light output

��

Point Sampling an Image

� simplest sampling is on a grid
� sample depends

solely on value
at grid points

��

Point Sampling

� multiply sample grid by image intensity to
obtain a discrete set of points, or samples.

Sampling Geometry

��

� some objects missed entirely, others poorly sampled
� could try unweighted or weighted area sampling
� but how can we be sure we show everything?

� need to think about entire class of solutions!

Sampling Errors

��

Image As Signal

� image as spatial signal
� 2D raster image

� discrete sampling of 2D spatial signal
� 1D slice of raster image

� discrete sampling of 1D spatial signal

�� !"#��

$��������%�����&������&������

��
%�
�
��
%�

��

Sampling Theory

� how would we generate a signal like this out
of simple building blocks?

� theorem
� any signal can be represented as an (infinite)

sum of sine waves at different frequencies

��

Sampling Theory in a Nutshell

� terminology
� bandwidth – length of repeated sequence on

infinite signal
� frequency – 1/bandwidth (number of repeated

sequences in unit length)
� example – sine wave

� bandwidth = 2π
� frequency = 1/ 2π

��

Summing Waves I

��

Summing Waves II

� represent spatial
signal as sum of
sine waves
(varying frequency
and phase shift)

� very commonly
used to represent
sound “spectrum”

�

1D Sampling and Reconstruction

�	

1D Sampling and Reconstruction

��

1D Sampling and Reconstruction

��

1D Sampling and Reconstruction

��

1D Sampling and Reconstruction

� problems
� jaggies – abrupt changes

��

1D Sampling and Reconstruction

� problems
� jaggies – abrupt changes
� lose data

��

Sampling Theorem

continuous signal can be completely recovered
from its samples
iff
sampling rate greater than twice maximum
frequency present in signal

- Claude Shannon

��

Nyquist Rate

� lower bound on sampling rate
� twice the highest frequency component in the

image’s spectrum

��

Falling Below Nyquist Rate

� when sampling below Nyquist Rate, resulting
signal looks like a lower-frequency one
� this is aliasing!

��

Nyquist Rate

�

Aliasing

� incorrect appearance of high frequencies as
low frequencies

� to avoid: antialiasing
� supersample

� sample at higher frequency
� low pass filtering

� remove high frequency function parts
� aka prefiltering, band-limiting

�	

Supersampling

��

Low-Pass Filtering

��

Low-Pass Filtering

��

Filtering

� low pass
� blur

� high pass
� edge finding

��

Previous Antialiasing Example

� texture mipmapping: low pass filter

��

Virtual Trackball

��

Virtual Trackball

� interface for spinning objects around
� drag mouse to control rotation of view volume

� rolling glass trackball
� center at screen origin, surrounds world
� hemisphere “sticks up” in z, out of screen
� rotate ball = spin world

��

Virtual Trackball

� know screen click: (x, 0, z)
� want to infer point on trackball: (x,y,z)

� ball is unit sphere, so ||x, y, z|| = 1.0
� solve for y

eye

image plane

��

Trackball Rotation
� correspondence:

� moving point on plane from (x, 0, z) to (a, 0, c)
� moving point on ball from p1 =(x, y, z) to p2 =(a, b, c)

� correspondence:
� translating mouse from p1 (mouse down) to p2 (mouse up)
� rotating about the axis n = p1 x p2

�

Trackball Computation

� user defines two points
� place where first clicked p1 = (x, y, z)
� place where released p2 = (a, b, c)

� create plane from vectors between points, origin
� axis of rotation is plane normal: cross product

� (p1 - - o) x (p2 - - o): p1 x p2 if origin = (0,0,0)
� amount of rotation depends on angle between

lines
� p1 • p2 = |p1| |p2| cos �
� |p1 x p2 | = |p1| |p2| sin �

� compute rotation matrix, use to rotate world

�	

Visibility

��

Reading

� FCG Chapter 7

��

Rendering Pipeline

Geometry
Database
GeometryGeometry
DatabaseDatabase

Model/View
Transform.
Model/ViewModel/View
Transform.Transform. LightingLightingLighting Perspective

Transform.
PerspectivePerspective
Transform.Transform. ClippingClippingClipping

Scan
Conversion

ScanScan
ConversionConversion

Depth
Test

DepthDepth
TestTestTexturingTexturingTexturing BlendingBlendingBlending

Frame-
buffer

FrameFrame--
bufferbuffer

��

Covered So Far

� modeling transformations
� viewing transformations
� projection transformations
� clipping
� scan conversion
� lighting
� shading

� we now know everything about how to draw a
polygon on the screen, except visible surface
determination

��

Invisible Primitives

� why might a polygon be invisible?
� polygon outside the field of view / frustum

� solved by clipping

� polygon is backfacing
� solved by backface culling

� polygon is occluded by object(s) nearer the viewpoint
� solved by hidden surface removal

� for efficiency reasons, we want to avoid spending
work on polygons outside field of view or backfacing

� for efficiency and correctness reasons, we need to
know when polygons are occluded

��

Hidden Surface Removal

��

Occlusion

� for most interesting scenes, some polygons
overlap

� to render the correct image, we need to
determine which polygons occlude which

��

Painter’s Algorithm

� simple: render the polygons from back to
front, “painting over” previous polygons

� draw blue, then green, then orange
� will this work in the general case?

��

Painter’s Algorithm: Problems

� intersecting polygons present a problem
� even non-intersecting polygons can form a

cycle with no valid visibility order:

�

Analytic Visibility Algorithms
� early visibility algorithms computed the set of visible

polygon fragments directly, then rendered the
fragments to a display:

�	

Analytic Visibility Algorithms

� what is the minimum worst-case cost of
computing the fragments for a scene
composed of n polygons?

� answer:
O(n2)

��

Analytic Visibility Algorithms

� so, for about a decade (late 60s to late 70s)
there was intense interest in finding efficient
algorithms for hidden surface removal

� we’ll talk about two:
� Binary Space Partition (BSP) Trees
� Warnock’s Algorithm

��

Binary Space Partition Trees (1979)

� BSP Tree: partition space with binary tree of
planes
� idea: divide space recursively into half-spaces

by choosing splitting planes that separate
objects in scene

� preprocessing: create binary tree of planes
� runtime: correctly traversing this tree

enumerates objects from back to front

��

Creating BSP Trees: Objects

��

Creating BSP Trees: Objects

��

Creating BSP Trees: Objects

��

Creating BSP Trees: Objects

��

Creating BSP Trees: Objects

��

Splitting Objects

� no bunnies were harmed in previous example
� but what if a splitting plane passes through

an object?
� split the object; give half to each node

Ouch

�

Traversing BSP Trees
� tree creation independent of viewpoint

� preprocessing step
� tree traversal uses viewpoint

� runtime, happens for many different viewpoints
� each plane divides world into near and far

� for given viewpoint, decide which side is near and
which is far

� check which side of plane viewpoint is on
independently for each tree vertex

� tree traversal differs depending on viewpoint!
� recursive algorithm

� recurse on far side
� draw object
� recurse on near side

�	

Traversing BSP Trees

renderBSP(BSPtree *T)
BSPtree *near, *far;
if (eye on left side of T->plane)

near = T->left; far = T->right;
else

near = T->right; far = T->left;
renderBSP(far);
if (T is a leaf node)

renderObject(T)
renderBSP(near);

query: given a viewpoint, produce an ordered list of (possibly
split) objects from back to front:

��

BSP Trees : Viewpoint A

��

BSP Trees : Viewpoint A

F N

F

N

��

BSP Trees : Viewpoint A

F NF
N

FN

� decide independently at
each tree vertex

� not just left or right child!

��

BSP Trees : Viewpoint A

F N

F

N

NF

FN

��

BSP Trees : Viewpoint A

F N

F

N

NF

FN

��

BSP Trees : Viewpoint A

F N

FN
F

N

NF

1

1

��

BSP Trees : Viewpoint A

F N
F

N

FN

FN NF

1

2

1 2

��

BSP Trees : Viewpoint A

F N

F

N
FN

FN

N F

NF

1

2

1 2

�

BSP Trees : Viewpoint A

F N

F

N
FN

FN

N F

NF

1

2

1 2

�	

BSP Trees : Viewpoint A

F N

F

N
FN

FN

N F

NF

1

2

3

1 2

3

��

BSP Trees : Viewpoint A

F N

FN

FN

N F

NF

1

2

3

4

F
N

1 2

34

��

BSP Trees : Viewpoint A

F N

FN

FN

N F

NF

1

2

3

4 5

F
N

1 2

34

5

��

BSP Trees : Viewpoint A

F N

FN

FN

N F

NF

1

2

3

4 5

1 2

34

5

6

78

96

7
8

9

FN

FN

FN

��

BSP Trees : Viewpoint B

N F

F

N
F

N

FN

F N

FNF N

N F

��

BSP Trees : Viewpoint B

N F

F

N
F

N

FN

1

34

2

F N

FNF N

N F5

6

7

891

2

3

4

5

6

7

9

8

��

BSP Tree Traversal: Polygons

� split along the plane defined by any polygon
from scene

� classify all polygons into positive or negative
half-space of the plane
� if a polygon intersects plane, split polygon into

two and classify them both
� recurse down the negative half-space
� recurse down the positive half-space

��

BSP Demo

� useful demo:
http://symbolcraft.com/graphics/bsp

��

Summary: BSP Trees

� pros:
� simple, elegant scheme
� correct version of painter’s algorithm back-to-front

rendering approach
� was very popular for video games (but getting less so)

� cons:
� slow to construct tree: O(n log n) to split, sort
� splitting increases polygon count: O(n2) worst-case
� computationally intense preprocessing stage restricts

algorithm to static scenes

	

Warnock’s Algorithm (1969)

� based on a powerful general approach
common in graphics
� if the situation is too complex, subdivide

� BSP trees was object space approach
� Warnock is image space approach

	
	

Warnock’s Algorithm

� start with root viewport
and list of all objects

� recursion:
� clip objects to

viewport
� if only 0 or 1 objects

� done
� else

� subdivide to new
smaller viewports

� distribute objects to
new viewpoints

� recurse

	
�

Warnock’s Algorithm

� termination
� viewport is single

pixel
� explicitly check for

object occlusion

	
�

Warnock’s Algorithm
� pros:

� very elegant scheme
� extends to any primitive type

� cons:
� hard to embed hierarchical schemes in

hardware
� complex scenes usually have small polygons

and high depth complexity (number of
polygons that overlap a single pixel)
� thus most screen regions come down to the

single-pixel case

	
�

The Z-Buffer Algorithm (mid-70’s)

� both BSP trees and Warnock’s algorithm
were proposed when memory was
expensive
� first 512x512 framebuffer was >$50,000!

� Ed Catmull proposed a radical new
approach called z-buffering.

� the big idea:
� resolve visibility independently at each

pixel

	
�

The Z-Buffer Algorithm

� we know how to rasterize polygons into an
image discretized into pixels:

	
�

The Z-Buffer Algorithm

� what happens if multiple primitives occupy
the same pixel on the screen?
� which is allowed to paint the pixel?

	
�

The Z-Buffer Algorithm

� idea: retain depth after projection transform
� each vertex maintains z coordinate

� relative to eye point
� can do this with canonical viewing volumes

	
�

The Z-Buffer Algorithm

� augment color framebuffer with Z-buffer or
depth buffer which stores Z value at each
pixel
� at frame beginning, initialize all pixel depths

to ∞
� when rasterizing, interpolate depth (Z)

across polygon
� check Z-buffer before storing pixel color in

framebuffer and storing depth in Z-buffer
� don’t write pixel if its Z value is more distant

than the Z value already stored there

	
�

Interpolating Z

� edge equations: Z just another planar
parameter:

� z = (-D - Ax – By) / C
� if walking across scanline by (Dx)

znew = zold – (A/C)(Dx)

� total cost:
� 1 more parameter to

increment in inner loop
� 3x3 matrix multiply for setup

		

Interpolating Z

� edge walking
� just interpolate Z along edges and across

spans
� barycentric coordinates

� interpolate Z like other
parameters

			

Z-Buffer

�store (r,g,b,z) for each pixel
� typically 8+8+8+24 bits, can be more

for all for all i,ji,j {{
Depth[i,jDepth[i,j] = MAX_DEPTH] = MAX_DEPTH
Image[i,jImage[i,j] = BACKGROUND_COLOUR] = BACKGROUND_COLOUR

} }
for all polygons P {for all polygons P {

for all pixels in P {for all pixels in P {
if (if (Z_pixelZ_pixel < < Depth[i,jDepth[i,j]) {]) {

Image[i,jImage[i,j] =] = C_pixelC_pixel
Depth[i,jDepth[i,j] =] = Z_pixelZ_pixel

} }
} }

} }

		�

Depth Test Precision

� reminder: projective transformation maps
eye-space z to generic z-range (NDC)

� simple example:

� thus:

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

⋅

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

−

=

�
�
�
�
�
�

�

	

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

10100

00

0010

0001

1

z

y

x

baz

y

x

T

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

⋅

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

−

=

�
�
�
�
�
�

�

	

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

10100

00

0010

0001

1

z

y

x

baz

y

x

T

eyeeye

eye
NDC z

b
a

z

bza
z +=

+⋅
=

eyeeye

eye
NDC z

b
a

z

bza
z +=

+⋅
=

		�

Depth Test Precision

� therefore, depth-buffer essentially stores 1/z,
rather than z!

� issue with integer depth buffers
� high precision for near objects
� low precision for far objects

--zzeyeeye

zzNDCNDC

--nn --ff

		�

Depth Test Precision

� low precision can lead to depth fighting for far
objects
� two different depths in eye space get mapped to

same depth in framebuffer
� which object “wins” depends on drawing order

and scan-conversion
� gets worse for larger ratios f:n

� rule of thumb: f:n < 1000 for 24 bit depth buffer
� with 16 bits cannot discern millimeter

differences in objects at 1 km distance

		�

Z-Buffer Algorithm Questions

� how much memory does the Z-buffer use?
� does the image rendered depend on the

drawing order?
� does the time to render the image depend on

the drawing order?
� how does Z-buffer load scale with visible

polygons? with framebuffer resolution?

		�

Z-Buffer Pros

� simple!!!
� easy to implement in hardware

� hardware support in all graphics cards today
� polygons can be processed in arbitrary order
� easily handles polygon interpenetration
� enables deferred shading

� rasterize shading parameters (e.g., surface
normal) and only shade final visible fragments

		�

Z-Buffer Cons

� poor for scenes with high depth complexity
� need to render all polygons, even if

most are invisible

� shared edges are handled inconsistently
� ordering dependent

eyeeye

		�

Z-Buffer Cons

� requires lots of memory
� (e.g. 1280x1024x32 bits)

� requires fast memory
� Read-Modify-Write in inner loop

� hard to simulate translucent polygons
� we throw away color of polygons behind

closest one
� works if polygons ordered back-to-front

� extra work throws away much of the speed
advantage

		�

Hidden Surface Removal

� two kinds of visibility algorithms
� object space methods
� image space methods

	�

Object Space Algorithms

� determine visibility on object or polygon level
� using camera coordinates

� resolution independent
� explicitly compute visible portions of polygons

� early in pipeline
� after clipping

� requires depth-sorting
� painter’s algorithm
� BSP trees

	�	

Image Space Algorithms

� perform visibility test for in screen coordinates
� limited to resolution of display
� Z-buffer: check every pixel independently
� Warnock: check up to single pixels if needed

� performed late in rendering pipeline

	��

Projective Rendering Pipeline

OCS - object coordinate system

WCS - world coordinate system

VCS - viewing coordinate system

CCS - clipping coordinate system

NDCS - normalized device coordinate system

DCS - device coordinate system

OCSOCS WCSWCS VCSVCS

CCSCCS

NDCSNDCS

DCSDCS

modelingmodeling
transformationtransformation

viewingviewing
transformationtransformation

projectionprojection
transformationtransformation

viewportviewport
transformationtransformation

alter walter w

/ w/ w

object world viewing

device

normalized
device

clipping

perspectiveperspective
divisiondivision

glVertex3f(x,y,z)glVertex3f(x,y,z)

glTranslatefglTranslatef(x,y,z)(x,y,z)
glRotatefglRotatef((thth,x,y,z),x,y,z)
........

gluLookAtgluLookAt(...)(...)

glFrustumglFrustum(...)(...)

glutInitWindowSizeglutInitWindowSize(w,h)(w,h)
glViewportglViewport(x,y,a,b)(x,y,a,b)

	��

Rendering Pipeline

Geometry
Database
GeometryGeometry
DatabaseDatabase

Model/View
Transform.
Model/ViewModel/View
Transform.Transform. LightingLightingLighting Perspective

Transform.
PerspectivePerspective
Transform.Transform. ClippingClippingClipping

Scan
Conversion

ScanScan
ConversionConversion

Depth
Test

DepthDepth
TestTestTexturingTexturingTexturing BlendingBlendingBlending

Frame-
buffer

FrameFrame--
bufferbuffer

OCSOCS
object

WCSWCS
world

VCSVCS
viewing

CCSCCS
clipping

NDCSNDCS

normalized
device

SCSSCS
screen

(2D)DCSDCS
device

(3D)

(4D)

/w/w

	��

Backface Culling

	��

Back-Face Culling

� on the surface of a closed orientable
manifold, polygons whose normals point
away from the camera are always
occluded:

note: backface culling
alone doesn’t solve the

hidden-surface problem!

	��

Back-Face Culling

� not rendering backfacing polygons improves
performance
� by how much?

� reduces by about half the number of polygons
to be considered for each pixel

� optimization when appropriate

	��

Back-Face Culling

� most objects in scene are typically “solid”
� rigorously: orientable closed manifolds

� orientable: must have two distinct sides
� cannot self-intersect
� a sphere is orientable since has

two sides, 'inside' and 'outside'.
� a Mobius strip or a Klein bottle is

not orientable

� closed: cannot “walk” from one
side to the other

� sphere is closed manifold
� plane is not

	��

Back-Face Culling

Yes No

� most objects in scene are typically “solid”
� rigorously: orientable closed manifolds

� manifold: local neighborhood of all points isomorphic to
disc

� boundary partitions space into interior & exterior

	��

Manifold

� examples of manifold objects:
� sphere
� torus
� well-formed

CAD part

	�

Back-Face Culling

� examples of non-manifold objects:
� a single polygon
� a terrain or height field
� polyhedron w/ missing face
� anything with cracks or holes in boundary
� one-polygon thick lampshade

	�	

Back-face Culling: VCS

yy

zz

first idea:first idea:
cull if cull if 0<ZN

sometimessometimes
misses polygons thatmisses polygons that
should be culledshould be culled

better idea:better idea:
cull if eye is below polygon planecull if eye is below polygon plane

eyeeye

aboveabove

belowbelow

	��

Back-face Culling: NDCS

yy

zz eyeeye

VCSVCS

NDCSNDCS

eyeeye works to cull ifworks to cull if 0>ZN
yy

zz

