University of British Columbia
CPSC 314 Computer Graphics
May-June 2005
Tamara Munzner
Sampling, Virtual Trackball, Hidden
Surfaces
Week 5, Tue Jun 7
http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005

H3 Corrections/Clarifications

- Q1 should be from +infinity, not -infinity
- Q 2-4 correction for point B
- Q7 clarified: only x and y coordinates are given for P
- Q8 is deleted

News

- Midterm handed back
- solutions posted
- distribution posted
- all grades so far posted
- P1 Hall of Fame posted
- P3 grading
- after 3:20
- P4 proposals
- email or conversation to all

Review: Texture Coordinates

- texture image: 2D array of color values (texels)
- assigning texture coordinates (s, t) at vertex with object coordinates ($\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}$)
- use interpolated (s, t) for texel lookup at each pixel
- use value to modify a polygon's color
- or other surface property
- specified by programmer or artist $\quad g 1 T e x \operatorname{Coord2f}(s, t)$

Review: Texture

- action when s or t is outside [0...1] interval
- tiling
- clamping
- functions
- replace/decal
- modulate
- blend
- texture matrix stack
glMatrixMode(GL_TEXTURE);

Review: Basic OpenGL Texturing

- setup
- generate identifier: glGenTextures
- load image data: glTex Image2D
- set texture parameters (tile/clamp/...):
glTexParameteri
- set texture drawing mode (modulate/replace/...): glTexEnvf
- drawing
- enable: glenable
- bind specific texture: glBindTexture
- specify texture coordinates before each vertex: glTexCoord2f

Review: Reconstruction

- how to deal with:
- pixels that are much larger than texels?
- apply filtering, "averaging"

- pixels that are much smaller than texels ? - interpolate

Review: Bump Mapping: Normals As Texture

- create illusion of complex geometry model
- control shape effect by locally perturbing surface normal

Review: Sphere Mapping

- texture is distorted fish-eye view
- point camera at mirrored sphere
- spherical texture coordinates

Review: Cube Mapping

- 6 planar textures, sides of cube

Review: Volumetric Texture

- point camera outwards to 6 faces
- use largest magnitude of vector to pick face
- other two coordinates for (s, t) texel location

define texture pattern over 3D domain - 3D space containing the object
- texture function can be
 digitized or procedural
- for each point on object compute texture from
point location in space
- 3D function $\rho(x, y, z)$

Review: Perlin Noise: Procedural Textures
function marble (point)
$x=$ point. $x+$ turbulence (point) ;
return marble_color(sin(x))

Review: Perlin Noise

- coherency: smooth not abrupt changes
- turbulence: multiple feature sizes

Review: Generating Coherent Noise

- just three main ideas
- nice interpolation
- use vector offsets to make grid irregular
- optimization
- sneaky use of 1D arrays instead of 2D/3D one

Review: Procedural Modeling

- textures, geometry
- nonprocedural: explicitly stored in memory
- procedural approach
- compute something on the fly
- not load from disk
- often less memory cost
- visual richness
- adaptable precision
- noise, fractals, particle systems

Review: Language-Based Generation

- L-Systems
- F: forward, R: right, L: left
- Koch snowflake:

F = FLFRRFLF

- Mariano's Bush:
$\mathrm{F}=\mathrm{FF}-[-\mathrm{F}+\mathrm{F}+\mathrm{F}]+[+\mathrm{F}-\mathrm{F}-\mathrm{F}]$
- angle 16

N

Correction/Review: Fractal Terrain

- 1D: midpoint displacement
- divide in half, randomly displace
- scale variance by half
- 2D: diamond-square
- generate new value at midpoint
- average corner values + random displacement - scale variance by half each time

Review: Particle Systems

- changeable/fluid stuff
- fire, steam, smoke, water, grass, hair, dust, waterfalls, fireworks, explosions, flocks
- life cycle
- generation, dynamics, death
- rendering tricks
- avoid hidden surface computations

Sampling

Samples

- most things in the real world are continuous
- everything in a computer is discrete
- the process of mapping a continuous function to a discrete one is called sampling
- the process of mapping a discrete function to a continuous one is called reconstruction
- the process of mapping a continuous variable to a discrete one is called quantization
- rendering an image requires sampling and quantization
- displaying an image involves reconstruction

Line Segments

- instead, quantize to many shades
- but what sampling algorithm is used?

Line Segments

- we tried to sample a line segment so it would map to a 2D raster display
- we quantized the pixel values to 0 or 1
- we saw stair steps, or jaggies

Unweighted Area Sampling

- shade pixels wrt area covered by thickened line
- equal areas cause equal intensity, regardless of distance from pixel center to area
- rough approximation formulated by dividing each pixel into a finer grid of pixels
- primitive cannot affect intensity of pixel if it does not intersect the pixel

Weighted Area Sampling

- intuitively, pixel cut through the center should be more heavily weighted than one cut along corner
- weighting function, $\mathrm{W}(\mathrm{x}, \mathrm{y})$
- specifies the contribution of primitive passing through the point (x, y) from pixel center

Images

- an image is a 2 D function $\mathrm{I}(\mathrm{x}, \mathrm{y})$ that specifies intensity for each point (x, y)

Image Sampling and Reconstruction

- convert continuous image to discrete set of samples
- display hardware reconstructs samples into continuous image
- finite sized source of light for each pixel

Point Sampling an Image

- simplest sampling is on a grid
- sample depends solely on value at grid points

Point Sampling

- multiply sample grid by image intensity to obtain a discrete set of points, or samples.

Sampling Errors

- some objects missed entirely, others poorly sampled - could try unweighted or weighted area sampling
- but how can we be sure we show everything?
- need to think about entire class of solutions!

Image As Signal

- image as spatial signal
- 2D raster image
- discrete sampling of 2D spatial signal
- 1D slice of raster image
- discrete sampling of 1D spatial signal

Sampling Theory

- how would we generate a signal like this out of simple building blocks?
- theorem
- any signal can be represented as an (infinite) sum of sine waves at different frequencies

Sampling Theory in a Nutshell

- terminology
- bandwidth - length of repeated sequence on infinite signal
- frequency - $1 /$ bandwidth (number of repeated sequences in unit length)
- example - sine wave
- bandwidth $=2 \pi$
- frequency $=1 / 2 \pi$
$\sin (t)$
 37

1D Sampling and Reconstruction

1D Sampling and Reconstruction

- problems
- jaggies - abrupt changes

1D Sampling and Reconstruction

- problems
- jaggies - abrupt changes
- lose data

45

Sampling Theorem

continuous signal can be completely recovered from its samples
iff
sampling rate greater than twice maximum frequency present in signal

- Claude Shannon

Falling Below Nyquist Rate

- when sampling below Nyquist Rate, resulting signal looks like a lower-frequency one - this is aliasing!

Aliasing

- incorrect appearance of high frequencies as low frequencies
- to avoid: antialiasing
- supersample
- sample at higher frequency
- low pass filtering
- remove high frequency function parts
- aka prefiltering, band-limiting

Virtual Trackball

- know screen click: (x, 0, z)
- want to infer point on trackball: (x, y, z)
- ball is unit sphere, so $\|x, y, z\|=1.0$
- solve for y
- hemisphere "sticks up" in z, out of screen
- rotate ball = spin world

Trackball Computation

- user defines two points
- place where first clicked $p_{1}=(x, y, z)$
- place where released $p_{2}=(a, b, c)$
- create plane from vectors between points, origin
- axis of rotation is plane normal: cross product
- ($\left.\mathbf{p}_{1}-\mathbf{o}\right) \times\left(\mathbf{p}_{2} .-\mathbf{o}\right): \boldsymbol{p}_{1} \times \mathbf{p}_{2}$ if origin $=(0,0,0)$
- amount of rotation depends on angle between lines
- $\mathbf{p}_{1} \cdot \mathbf{p}_{2}=\left|\mathbf{p}_{1}\right|\left|\mathbf{p}_{2}\right| \cos \theta$
$-\left|\mathbf{p}_{1} \times \mathbf{p}_{2}\right|=\left|\mathbf{p}_{1}\right|\left|\mathbf{p}_{2}\right| \sin \theta$
- compute rotation matrix, use to rotate world

Reading

- FCG Chapter 7

Covered So Far

- modeling transformations
- viewing transformations
- projection transformations
- clipping
- scan conversion
- lighting
- shading
- we now know everything about how to draw a polygon on the screen, except visible surface determination

Invisible Primitives

- why might a polygon be invisible?
- polygon outside the field of view / frustum - solved by clipping
- polygon is backfacing
- solved by backface culling
- polygon is occluded by object(s) nearer the viewpoint - solved by hidden surface removal
- for efficiency reasons, we want to avoid spending work on polygons outside field of view or backfacing
- for efficiency and correctness reasons, we need to know when polygons are occluded

Occlusion

- for most interesting scenes, some polygons overlap

- to render the correct image, we need to determine which polygons occlude which

Painter's Algorithm

- simple: render the polygons from back to front, "painting over" previous polygons

- draw blue, then green, then orange
- will this work in the general case?

Painter's Algorithm: Problems

- intersecting polygons present a problem
- even non-intersecting polygons can form a cycle with no valid visibility order:

Analytic Visibility Algorithms

- early visibility algorithms computed the set of visible polygon fragments directly, then rendered the fragments to a display:

Analytic Visibility Algorithms

- what is the minimum worst-case cost of

Analytic Visibility Algorithms

- so, for about a decade (late 60s to late 70s) there was intense interest in finding efficient algorithms for hidden surface removal
- we'll talk about two:
- Binary Space Partition (BSP) Trees
- Warnock's Algorithm

Binary Space Partition Trees (1979)

- BSP Tree: partition space with binary tree of planes
- idea: divide space recursively into half-spaces by choosing splitting planes that separate objects in scene
- preprocessing: create binary tree of planes - runtime: correctly traversing this tree enumerates objects from back to front

Creating BSP Trees: Objects

Splitting Objects

- no bunnies were harmed in previous example
- but what if a splitting plane passes through an object?
- split the object; give half to each node

Traversing BSP Trees

- tree creation independent of viewpoint - preprocessing step
- tree traversal uses viewpoint
- runtime, happens for many different viewpoints
- each plane divides world into near and far
for given viewpoint, decide which side is near and which is far
- check which side of plane viewpoint is on independently for each tree vertex
tree traversal differs depending on viewpoint!
- recursive algorithm
- recurse on far side
- draw object
- recurse on near side

Page 14

Page 15

Page 16

BSP Tree Traversal: Polygons

- split along the plane defined by any polygon from scene
- classify all polygons into positive or negative half-space of the plane
- if a polygon intersects plane, split polygon into two and classify them both
- recurse down the negative half-space
- recurse down the positive half-space

Summary: BSP Trees

- pros:
- simple, elegant scheme
- correct version of painter's algorithm back-to-front rendering approach
- was very popular for video games (but getting less so)
- cons:
- slow to construct tree: $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ to split, sort
- splitting increases polygon count: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ worst-case
- computationally intense preprocessing stage restricts algorithm to static scenes

Warnock's Algorithm (1969)

- based on a powerful general approach common in graphics
- if the situation is too complex, subdivide
- BSP trees was object space approach
- Warnock is image space approach

Warnock's Algorithm

- termination
- viewport is single pixel
- explicitly check for object occlusion

(5)

Warnock's Algorithm
- pros:
- very elegant scheme
- extends to any primitive type
- cons:
- hard to embed hierarchical schemes in
hardware
- complex scenes usually have small polygons
and high depth complexity (number of
polygons that overlap a single pixel)
- thus most screen regions come down to the
single-pixel case

The Z-Buffer Algorithm (mid-70's)

- both BSP trees and Warnock's algorithm were proposed when memory was expensive
. first 512×512 framebuffer was $>\$ 50,000$!
- Ed Catmull proposed a radical new approach called z-buffering.
- the big idea:
- resolve visibility independently at each pixel

The Z-Buffer Algorithm

- we know how to rasterize polygons into an image discretized into pixels:

The Z-Buffer Algorithm

- what happens if multiple primitives occupy the same pixel on the screen?
- which is allowed to paint the pixel?

The Z-Buffer Algorithm

- idea: retain depth after projection transform
- each vertex maintains z coordinate
- relative to eye point
- can do this with canonical viewing volumes

The Z-Buffer Algorithm

- augment color framebuffer with Z-buffer or depth buffer which stores Z value at each pixel
- at frame beginning, initialize all pixel depths to ∞
- when rasterizing, interpolate depth (Z) across polygon
- check Z-buffer before storing pixel color in framebuffer and storing depth in Z-buffer
- don't write pixel if its Z value is more distant than the Z value already stored there

Interpolating Z

- edge equations: Z just another planar parameter:

$$
\text { - } z=(-D-A x-B y) / C
$$

- if walking across scanline by $\left(D_{x}\right)$
$z_{\text {new }}=z_{\text {old }}-(A / C)\left(D_{x}\right)$
- total cost:
- 1 more parameter to
increment in inner loop
- 3x3 matrix multiply for setup

Interpolating Z

- edge walking
- just interpolate Z along edges and across spans
- barycentric coordinates
- interpolate Z like other parameters

Z-Buffer

-store (r,g,b,z) for each pixel

- typically $8+8+8+24$ bits, can be more

```
for all i,j {
    Depth[i,j] = MAX_DEPTH
    Image[i,j] = BACKGROUND_COLOUR
f
    polygons P {
        for all pixels in P {
            if (Z_pixel < Depth[i,j]) {
            Image[i,j] = C_pixel
            Depth[i,j] = z_pixel
        }
    }
```


Depth Test Precision

- therefore, depth-buffer essentially stores $1 / z$, rather than z !
- issue with integer depth buffers
- high precision for near objects
- low precision for far objects

Depth Test Precision

- reminder: projective transformation maps eye-space z to generic z-range (NDC)
- simple example:

$$
T\left(\left[\begin{array}{l}
x \\
y \\
z \\
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & -1 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

- thus:

$$
z_{\text {NDC }} \equiv \frac{a \cdot z_{\text {eye }}+b}{z_{\text {eye }}} \equiv a+\frac{b}{z_{\text {eye }}}
$$

Depth Test Precision

- low precision can lead to depth fighting for far objects
- two different depths in eye space get mapped to same depth in framebuffer
- which object "wins" depends on drawing order and scan-conversion
- gets worse for larger ratios $f: n$
- rule of thumb: f:n < 1000 for 24 bit depth buffer
- with 16 bits cannot discern millimeter
differences in objects at 1 km distance

Z-Buffer Algorithm Questions

- how much memory does the Z-buffer use?
- does the image rendered depend on the drawing order?
- does the time to render the image depend on the drawing order?
- how does Z-buffer load scale with visible polygons? with framebuffer resolution?

Z-Buffer Pros

- simple!!!
- easy to implement in hardware
- hardware support in all graphics cards today
- polygons can be processed in arbitrary order
- easily handles polygon interpenetration
- enables deferred shading
- rasterize shading parameters (e.g., surface normal) and only shade final visible fragments

Z-Buffer Cons

- requires lots of memory
- (e.g. 1280×1024×32 bits)
- requires fast memory
- Read-Modify-Write in inner loop
- hard to simulate translucent polygons
- we throw away color of polygons behind closest one
- works if polygons ordered back-to-front - extra work throws away much of the speed advantage

Object Space Algorithms

- determine visibility on object or polygon level - using camera coordinates
- resolution independent
- explicitly compute visible portions of polygons
- early in pipeline
- after clipping
- requires depth-sorting
- painter's algorithm
- BSP trees

Image Space Algorithms

- perform visibility test for in screen coordinates
- limited to resolution of display
- Z-buffer: check every pixel independently
- Warnock: check up to single pixels if needed
- performed late in rendering pipeline

Projective Rendering Pipeline

Back-Face Culling

- not rendering backfacing polygons improves performance
- by how much?
- reduces by about half the number of polygons to be considered for each pixel
- optimization when appropriate

Back-Face Culling

- most objects in scene are typically "solid"
- rigorously: orientable closed manifolds
- orientable: must have two distinct sides
- cannot self-intersect
- a sphere is orientable since has two sides, 'inside' and 'outside'.
- a Mobius strip or a Klein bottle is not orientable
closed: cannot "walk" from one side to the other
- sphere is closed manifold
- plane is not

Back-Face Culling

- most objects in scene are typically "solid"
- rigorously: orientable closed manifolds
- manifold: local neighborhood of all points isomorphic to disc
- boundary partitions space into interior \& exterior

Back-Face Culling

- examples of non-manifold objects:
- a single polygon
- a terrain or height field
- polyhedron w/ missing face
- anything with cracks or holes in boundary
- one-polygon thick lampshade

Back-face Culling: NDCS

CS

NDCS
eye

works to cull if $N_{Z}>0$

