
University of British Columbia
CPSC 314 Computer Graphics

May-June 2005

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005

Textures, Procedural Approaches,
Sampling

Week 4, Thu Jun 2

�

Review: Picking Methods

� manual ray intersection

� bounding extents

� backbuffer coding

xVCS

y

�

Review: Select/Hit Picking

� assign (hierarchical) integer key/name(s)
� small region around cursor as new viewport

� redraw in selection mode
� equivalent to casting pick “tube”
� store keys, depth for drawn objects in hit list

� examine hit list
� usually use frontmost, but up to application

�

Review: Collision Detection
� boundary check

� perimeter of world vs. viewpoint or objects
� 2D/3D absolute coordinates for bounds
� simple point in space for viewpoint/objects

� set of fixed barriers
� walls in maze game

� 2D/3D absolute coordinate system
� set of moveable objects

� one object against set of items
� missile vs. several tanks

� multiple objects against each other
� punching game: arms and legs of players
� room of bouncing balls

�

Review: Collision Proxy Tradeoffs

increasing complexity & tightness of fit

decreasing cost of (overlap tests + proxy update)

AABB OBBSphere Convex Hull6-dop

� collision proxy (bounding volume) is piece of geometry used
to represent complex object for purposes of finding collision

� proxies exploit facts about human perception
� we are bad at determining collision correctness
� especially many things happening quickly

�

Review: Spatial Data Structures
uniform grids

bounding volume hierarchies

octrees

BSP trees

kd-trees

k-dops

�

Review: Exploiting Coherence

� player normally doesn’t move far between
frames

� track incremental changes, using previous
results instead of doing full search each time

� keep track of entry and exit into cells through
portals
� probably the same cells they intersect now
� or moved to neighbor

�

Review: Precise Collisions

t=0

t=1

t=0.5

t=1

t=0.5
t=0.75

t=0.5
t=0.625

t=0.5625

� hacked clean up
� simply move position so that objects just touch, leave time the

same

� interval halving
� binary search through time to find exact collision point and time

�

Review: Fast-Moving Objects

� temporal sampling
� aliasing: can miss collision completely!

� movement line
� conservative prediction

� assume maximum velocity, smallest feature size
� increase temporal and spatial sampling rate

� simple alternative: just miss the hard cases
� player may not notice!

	

Review: Collision Response

� frustrating to just stop player
� often move tangentially to obstacle

� recursively to catch all collisions
� handling multiple simultaneous contacts

		

Texturing

	�

Reading

� FCG Chapter 10
� Red Book Chapter Texture Mapping

	�

Rendering Pipeline

Geometry
Database
GeometryGeometry
DatabaseDatabase

Model/View
Transform.
Model/ViewModel/View
Transform.Transform. LightingLightingLighting Perspective

Transform.
PerspectivePerspective
Transform.Transform. ClippingClippingClipping

Scan
Conversion

ScanScan
ConversionConversion

Depth
Test

DepthDepth
TestTestTexturingTexturingTexturing BlendingBlendingBlending

Frame-
buffer

FrameFrame--
bufferbuffer

Geometry ProcessingGeometry Processing

RasterizationRasterization Fragment ProcessingFragment Processing

	�

Texture Mapping

� real life objects have
nonuniform colors,
normals

� to generate realistic
objects, reproduce
coloring & normal
variations = texture

� can often replace
complex geometric
details

	�

Texture Mapping

� introduced to increase realism
� lighting/shading models not enough

� hide geometric simplicity
� images convey illusion of geometry
� map a brick wall texture on a flat polygon
� create bumpy effect on surface

� associate 2D information with 3D surface
� point on surface corresponds to a point in

texture
� “paint” image onto polygon

	�

Color Texture Mapping

� define color (RGB) for each point on object
surface

� two approaches
� surface texture map
� volumetric texture

	�

Texture Coordinates

� texture image: 2D array of color values (texels)
� assigning texture coordinates (s,t) at vertex with

object coordinates (x,y,z,w)
� use interpolated (s,t) for texel lookup at each pixel
� use value to modify a polygon’s color

� or other surface property

� specified by programmer or artist glTexCoord2f(s,t)
glVertexf(x,y,z,w)

	�

Texture Mapping Example

+ =

	�

Example Texture Map

glTexCoord2d(0,0);
glVertex3d (0, -2, -2);

glTexCoord2d(1,1);
glVertex3d (0, 2, 2);

�

Fractional Texture Coordinates

(0,0) (1,0)

(0,1) (1,1)

(0,0) (.25,0)

(0,.5) (.25,.5)

texture
image

�	

Texture Lookup: Tiling and Clamping

� what if s or t is outside the interval [0…1]?
� multiple choices

� use fractional part of texture coordinates
� cyclic repetition of texture to tile whole surface

glTexParameteri(…, GL_TEXTURE_WRAP_S, GL_REPEAT,
GL_TEXTURE_WRAP_T, GL_REPEAT, ...)

� clamp every component to range [0…1]
� re-use color values from texture image border

glTexParameteri(…, GL_TEXTURE_WRAP_S, GL_CLAMP,
GL_TEXTURE_WRAP_T, GL_CLAMP, ...)

��

glTexCoord2d(1, 1);
glVertex3d (x, y, z);

(1,0)

(0,0) (0,1)

(1,1)

Tiled Texture Map

glTexCoord2d(4, 4);
glVertex3d (x, y, z);

(4,4)(4,0)

(0,4)(0,0)

��

Demo

��

Texture Coordinate Transformation
� motivation

� change scale, orientation of texture on an object
� approach

� texture matrix stack
� transforms specified (or generated) tex coords

glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glRotate();

…
� more flexible than changing (s,t) coordinates

� [demo]

��

Texture Functions
� once have value from the texture map, can:

� directly use as surface color: GL_REPLACE
� throw away old color, lose lighting effects

� modulate surface color: GL_MODULATE
� multiply old color by new value, keep lighting info
� texturing happens after lighting, not relit

� use as surface color, modulate alpha: GL_DECAL
� like replace, but supports texture transparency

� blend surface color with another: GL_BLEND
� new value controls which of 2 colors to use
� indirection, new value not used directly for coloring

� specify with glTexEnvi(GL_TEXTURE_ENV,
GL_TEXTURE_ENV_MODE, <mode>)

��

Texture Pipeline

Texel color

(0.9,0.8,0.7)

(x, y, z)

Object position

(-2.3, 7.1, 17.7)

(s, t)

Parameter space

(0.32, 0.29)

Texel space

(81, 74)

(s’, t’)

Transformed
parameter space

(0.52, 0.49)

Final color

(0.45,0.4,0.35)

Object color

(0.5,0.5,0.5)

��

Texture Objects and Binding

� texture object
� an OpenGL data type that keeps textures resident in

memory and provides identifiers to easily access
them

� provides efficiency gains over having to repeatedly
load and reload a texture

� you can prioritize textures to keep in memory
� OpenGL uses least recently used (LRU) if no priority

is assigned
� texture binding

� which texture to use right now
� switch between preloaded textures

��

Basic OpenGL Texturing
� create a texture object and fill it with texture data:

� glGenTextures(num, &indices) to get identifiers for the
objects

� glBindTexture(GL_TEXTURE_2D, identifier) to bind
� following texture commands refer to the bound texture

� glTexParameteri(GL_TEXTURE_2D, …, …) to specify
parameters for use when applying the texture

� glTexImage2D(GL_TEXTURE_2D, ….) to specify the
texture data (the image itself)

� enable texturing: glEnable(GL_TEXTURE_2D)
� state how the texture will be used:

� glTexEnvf(…)

� specify texture coordinates for the polygon:
� use glTexCoord2f(s,t) before each vertex:

� glTexCoord2f(0,0); glVertex3f(x,y,z);

��

Low-Level Details
� large range of functions for controlling layout of texture data

� state how the data in your image is arranged
� e.g.: glPixelStorei(GL_UNPACK_ALIGNMENT, 1) tells

OpenGL not to skip bytes at the end of a row
� you must state how you want the texture to be put in memory:

how many bits per “pixel”, which channels,…
� textures must be square and size a power of 2

� common sizes are 32x32, 64x64, 256x256
� smaller uses less memory, and there is a finite amount of

texture memory on graphics cards
� ok to use texture template sample code for project 4

� http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=09

�

Texture Mapping

� texture coordinates
� specified at vertices

glTexCoord2f(s,t);
glVertexf(x,y,z);

� interpolated across triangle (like R,G,B,Z)
� …well not quite!

�	

Texture Mapping

� texture coordinate interpolation
� perspective foreshortening problem

��

Interpolation: Screen vs. World Space

� screen space interpolation incorrect
� problem ignored with shading, but artifacts

more visible with texturing

P1(x,y,z)

V0(x’,y’)

V1(x’,y’)

P0(x,y,z)

��

Texture Coordinate Interpolation
� perspective correct interpolation

� αααα, ββββ, γγγγ :
� barycentric coordinates of a point P in a triangle

� s0, s1, s2 :
� texture coordinates of vertices

� w0, w1,w2 :
� homogeneous coordinates of vertices

210

221100

///
///

www
wswsws

s
γβα

γβα
++

⋅+⋅+⋅=

(s1,t1)

(s0,t0)

(s2,t2)

(x1,y1,z1,w1)

(x0,y0,z0,w0)

(x2,y2,z2,w2)

(α,β,γ)(α,β,γ)(α,β,γ)(α,β,γ)
(s,t)?

��

Reconstruction

(image courtesy of (image courtesy of KiriakosKiriakos KutulakosKutulakos, U Rochester), U Rochester)

��

Reconstruction

� how to deal with:
� pixels that are much larger than texels?

� apply filtering, “averaging”

� pixels that are much smaller than texels ?
� interpolate

��

MIPmapping

Without MIPWithout MIP--mappingmapping

With MIPWith MIP--mappingmapping

use use ““image pyramidimage pyramid”” to to precomputeprecompute
averaged versions of the textureaveraged versions of the texture

store whole pyramid in store whole pyramid in
single block of memorysingle block of memory

��

MIPmaps
� multum in parvo -- many things in a small place

� prespecify a series of prefiltered texture maps of
decreasing resolutions

� requires more texture storage
� avoid shimmering and flashing as objects move

� gluBuild2DMipmaps

� automatically constructs a family of textures from
original texture size down to 1x1

without with

��

MIPmap storage

� only 1/3 more space required

��

Texture Parameters

� in addition to color can control other
material/object properties
� surface normal (bump mapping)
� reflected color (environment mapping)

�

Bump Mapping: Normals As Texture

� object surface often not smooth – to recreate correctly
need complex geometry model

� can control shape “effect” by locally perturbing surface
normal
� random perturbation
� directional change over region

�	

Bump Mapping

��

Bump Mapping

��

Embossing

� at transitions
� rotate point’s surface normal by � or - �

��

Displacement Mapping

� bump mapping gets
silhouettes wrong
� shadows wrong too

� change surface
geometry instead
� only recently

available with
realtime graphics

� need to subdivide
surface

��

Environment Mapping

� cheap way to achieve reflective effect
� generate image of surrounding
� map to object as texture

��

Environment Mapping

� used to model object that reflects
surrounding textures to the eye
� movie example: cyborg in Terminator 2

� different approaches
� sphere, cube most popular

� OpenGL support
� GL_SPHERE_MAP, GL_CUBE_MAP

� others possible too

��

Sphere Mapping

� texture is distorted fish-eye view
� point camera at mirrored sphere
� spherical texture mapping creates texture

coordinates that correctly index into this texture map

��

Cube Mapping

� 6 planar textures, sides of cube
� point camera in 6 different directions, facing

out from origin

��

Cube Mapping

A

B
C

E

F

D

�

Cube Mapping

� direction of reflection vector r selects the face of the
cube to be indexed
� co-ordinate with largest magnitude

� e.g., the vector (-0.2, 0.5, -0.84) selects the –Z face

� remaining two coordinates (normalized by the 3rd

coordinate) selects the pixel from the face.
� e.g., (-0.2, 0.5) gets mapped to (0.38, 0.80).

� difficulty in interpolating across faces

�	

Blinn/Newell Latitude Mapping

��

Review: Texture Objects and Binding

� texture objects
� texture management: switch with bind, not reloading
� can prioritize textures to keep in memory
� Q: what happens to textures kicked out of memory?

� A: resident memory (on graphics card) vs.
nonresident (on CPU)

� details hidden from developers by OpenGL

��

Volumetric Texture
� define texture pattern

over 3D domain - 3D
space containing the
object
� texture function can be

digitized or procedural
� for each point on object

compute texture from
point location in space

� common for natural
material/irregular textures
(stone, wood,etc…)

��

Volumetric Bump Mapping

Marble

Bump

��

Volumetric Texture Principles

� 3D function ρ
� ρ = ρ(x,y,z)

� texture space – 3D space that holds the
texture (discrete or continuous)

� rendering: for each rendered point P(x,y,z)
compute ρ(x,y,z)

� volumetric texture mapping function/space
transformed with objects

��

Procedural Textures

� generate “image” on the fly, instead of
loading from disk
� often saves space
� allows arbitrary level of detail

��

Procedural Texture Effects: Bombing

� randomly drop bombs of various shapes, sizes and
orientation into texture space (store data in table)
� for point P search table and determine if inside shape

� if so, color by shape
� otherwise, color by objects color

��

Procedural Texture Effects

� simple marble

function boring_marble(point)
x = point.x;
return marble_color(sin(x));
// marble_color maps scalars to colors

��

Perlin Noise: Procedural Textures

� several good explanations
� FCG Section 10.1
� http://www.noisemachine.com/talk1
� http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
� http://www.robo-murito.net/code/perlin-noise-math-faq.html

http://mrl.nyu.edu/~perlin/planet/

�

Perlin Noise: Coherency

� smooth not abrupt changes

coherent white noise

�	

Perlin Noise: Turbulence

� multiple feature sizes
� add scaled copies of noise

��

Perlin Noise: Turbulence

� multiple feature sizes
� add scaled copies of noise

��

Perlin Noise: Turbulence

� multiple feature sizes
� add scaled copies of noise

function turbulence(p)

t = 0; scale = 1;

while (scale > pixelsize) {

t +=
abs(Noise(p/scale)*scale);

scale/=2;

} return t;

��

Generating Coherent Noise

� just three main ideas
� nice interpolation
� use vector offsets to make grid irregular
� optmization

� sneaky use of 1D arrays instead of 2D/3D one

��

Interpolating Textures

� nearest neighbor
� bilinear
� hermite

��

Vector Offsets From Grid

� weighted average of gradients
� random unit vectors

��

Optimization

� save memory and time
� conceptually:

� 2D or 3D grid
� populate with random number generator

� actually:
� precompute two 1D arrays of size n (typical size 256)

� random unit vectors
� permutation of integers 0 to n-1

� lookup
� g(i, j, k) = G[(i + P[(j + P[k]) mod n]) mod n]

��

Perlin Marble
� use turbulence, which in turn uses noise:

function marble(point)

x = point.x + turbulence(point);

return marble_color(sin(x))

��

Procedural Approaches

�

Procedural Modeling

� textures, geometry
� nonprocedural: explicitly stored in memory

� procedural approach
� compute something on the fly
� often less memory cost
� visual richness

� fractals, particle systems, noise

�	

Fractal Landscapes

� fractals: not just for “showing math”
� triangle subdivision
� vertex displacement
� recursive until termination condition

http://www.fractal-landscapes.co.uk/images.html

��

Self-Similarity

� infinite nesting of structure on all scales

��

Fractal Dimension
� D = log(N)/log(r)

N = measure, r = subdivision scale
� Hausdorff dimension: noninteger

D = log(N)/log(r) D = log(4)/log(3) = 1.26

coastline of Britain

Koch snowflake

http://www.vanderbilt.edu/AnS/psychology/cogsci/chaos/workshop/Fractals.html

��

Language-Based Generation

� L-Systems: after Lindenmayer
� Koch snowflake: F :- FLFRRFLF

� F: forward, R: right, L: left

� Mariano’s Bush:
F=FF-[-F+F+F]+[+F-F-F] }
� angle 16

http://spanky.triumf.ca/www/fractint/lsys/plants.html

��

1D: Midpoint Displacement

� divide in half
� randomly displace
� scale variance by half

http://www.gameprogrammer.com/fractal.html

��

2D: Diamond-Square

� diamond step
� generate a new value at square midpoint

� average corner values + random amount
� gives diamonds when have multiple squares in grid

� square step
� generate new value at diamond midpoint

� average corner values + random amount
� gives squares again in grid

��

Particle Systems

� loosely defined
� modeling, or rendering, or animation

� key criteria
� collection of particles
� random element controls attributes

� position, velocity (speed and direction), color,
lifetime, age, shape, size, transparency

� predefined stochastic limits: bounds, variance,
type of distribution

��

Particle System Examples

� objects changing fluidly over time
� fire, steam, smoke, water

� objects fluid in form
� grass, hair, dust

� physical processes
� waterfalls, fireworks, explosions

� group dynamics: behavioral
� birds/bats flock, fish school,

human crowd, dinosaur/elephant stampede

��

Particle Systems Demos

� general particle systems
� http://www.wondertouch.com

� boids: bird-like objects
� http://www.red3d.com/cwr/boids/

�

Particle Life Cycle

� generation
� randomly within “fuzzy” location
� initial attribute values: random or fixed

� dynamics
� attributes of each particle may vary over time

� color darker as particle cools off after explosion

� can also depend on other attributes
� position: previous particle position + velocity + time

� death
� age and lifetime for each particle (in frames)
� or if out of bounds, too dark to see, etc

�	

Particle System Rendering

� expensive to render thousands of particles
� simplify: avoid hidden surface calculations

� each particle has small graphical primitive
(blob)

� pixel color: sum of all particles mapping to it
� some effects easy

� temporal anti-aliasing (motion blur)
� normally expensive: supersampling over time
� position, velocity known for each particle
� just render as streak

��

Procedural Approaches Summary

� Perlin noise
� fractals
� L-systems
� particle systems

� not at all a complete list!
� big subject: entire classes on this alone

��

Sampling

��

Samples

� most things in the real world are continuous
� everything in a computer is discrete
� the process of mapping a continuous function to a

discrete one is called sampling
� the process of mapping a discrete function to a

continuous one is called reconstruction
� the process of mapping a continuous variable to a

discrete one is called quantization
� rendering an image requires sampling and

quantization
� displaying an image involves reconstruction

��

Line Segments

� we tried to sample a line segment so it would
map to a 2D raster display

� we quantized the pixel values to 0 or 1
� we saw stair steps, or jaggies

��

Line Segments

� instead, quantize to many shades
� but what sampling algorithm is used?

��

Unweighted Area Sampling

� shade pixels wrt area covered by thickened line
� equal areas cause equal intensity, regardless of

distance from pixel center to area
� rough approximation formulated by dividing each pixel

into a finer grid of pixels

� primitive cannot affect intensity of pixel if it does not
intersect the pixel

��

Weighted Area Sampling

� intuitively, pixel cut through the center should be
more heavily weighted than one cut along corner

� weighting function, W(x,y)
� specifies the contribution of primitive passing through

the point (x, y) from pixel center

x

Intensity
W(x,y)

��

Images

� an image is a 2D function �(x, y) that
specifies intensity for each point (x, y)

�

Image Sampling and Reconstruction

� convert continuous image to discrete set of
samples

� display hardware reconstructs samples into
continuous image
� finite sized source of light for each pixel

discrete input values continuous light output

�	

Point Sampling an Image

� simplest sampling is on a grid
� sample depends

solely on value
at grid points

��

Point Sampling

� multiply sample grid by image intensity to
obtain a discrete set of points, or samples.

Sampling Geometry

��

� some objects missed entirely, others poorly sampled
� could try unweighted or weighted area sampling
� but how can we be sure we show everything?

� need to think about entire class of solutions!

Sampling Errors

��

Image As Signal

� image as spatial signal
� 2D raster image

� discrete sampling of 2D spatial signal
� 1D slice of raster image

� discrete sampling of 1D spatial signal

�� !"#��

$��������%�����&������&������

��
%�
�
��
%�

��

Sampling Theory

� how would we generate a signal like this out
of simple building blocks?

� theorem
� any signal can be represented as an (infinite)

sum of sine waves at different frequencies

��

Sampling Theory in a Nutshell

� terminology
� bandwidth – length of repeated sequence on

infinite signal
� frequency – 1/bandwidth (number of repeated

sequences in unit length)
� example – sine wave

� bandwidth = 2π
� frequency = 1/ 2π

��

Summing Waves I

��

Summing Waves II

� represent spatial
signal as sum of
sine waves
(varying frequency
and phase shift)

� very commonly
used to represent
sound “spectrum”

��

1D Sampling and Reconstruction

	

1D Sampling and Reconstruction

	
	

1D Sampling and Reconstruction

	
�

1D Sampling and Reconstruction

	
�

1D Sampling and Reconstruction

� problems
� jaggies – abrupt changes

	
�

1D Sampling and Reconstruction

� problems
� jaggies – abrupt changes
� lose data

	
�

Sampling Theorem

continuous signal can be completely recovered
from its samples
iff
sampling rate greater than twice maximum
frequency present in signal

- Claude Shannon

	
�

Nyquist Rate

� lower bound on sampling rate
� twice the highest frequency component in the

image’s spectrum

	
�

Falling Below Nyquist Rate

� when sampling below Nyquist Rate, resulting
signal looks like a lower-frequency one
� this is aliasing!

	
�

Nyquist Rate

	
�

Aliasing

� incorrect appearance of high frequencies as
low frequencies

� to avoid: antialiasing
� supersample

� sample at higher frequency
� low pass filtering

� remove high frequency function parts
� aka prefiltering, band-limiting

		

Supersampling

			

Low-Pass Filtering

		�

Low-Pass Filtering

		�

Filtering

� low pass
� blur

� high pass
� edge finding

		�

Previous Antialiasing Example

� texture mipmapping: low pass filter

