

University of British Columbia CPSC 314 Computer Graphics May-June 2005

Tamara Munzner
Textures, Procedural Approaches,
Sampling

Week 4, Thu Jun 2

http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005

Review: Picking Methods

manual ray intersection

bounding extents

backbuffer coding

Review: Select/Hit Picking

- assign (hierarchical) integer key/name(s)
- small region around cursor as new viewport

- redraw in selection mode
 - equivalent to casting pick "tube"
 - store keys, depth for drawn objects in hit list
- examine hit list
 - usually use frontmost, but up to application

Review: Collision Detection

- boundary check
 - perimeter of world vs. viewpoint or objects
 - 2D/3D absolute coordinates for bounds
 - simple point in space for viewpoint/objects
- set of fixed barriers
 - walls in maze game
 - 2D/3D absolute coordinate system
- set of moveable objects
 - one object against set of items
 - missile vs. several tanks
 - multiple objects against each other
 - punching game: arms and legs of players
 - room of bouncing balls

4

Review: Collision Proxy Tradeoffs

- collision proxy (bounding volume) is piece of geometry used to represent complex object for purposes of finding collision
- proxies exploit facts about human perception
 - we are bad at determining collision correctness
 - especially many things happening quickly

increasing complexity & tightness of fit

decreasing cost of (overlap tests + proxy update)

Review: Exploiting Coherence

- player normally doesn't move far between frames
- track incremental changes, using previous results instead of doing full search each time
- keep track of entry and exit into cells through portals
 - probably the same cells they intersect now
 - or moved to neighbor

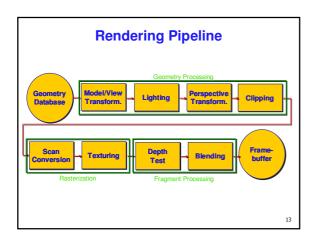
Review: Fast-Moving Objects

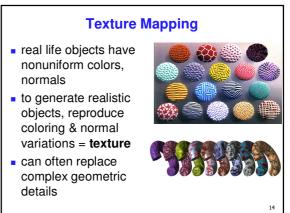
- temporal sampling
 - aliasing: can miss collision completely!

- movement line
- conservative prediction
 - assume maximum velocity, smallest feature size
 - increase temporal and spatial sampling rate
- simple alternative: just miss the hard cases
 - player may not notice!

Review: Collision Response

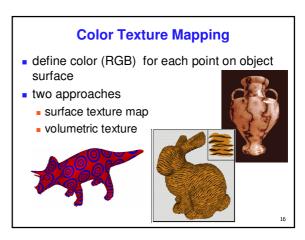
- frustrating to just stop player
 - often move tangentially to obstacle
- recursively to catch all collisions
- handling multiple simultaneous contacts

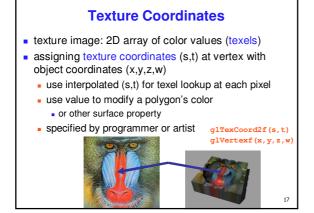

10

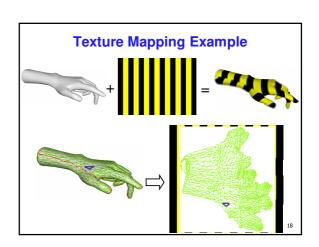

Texturing

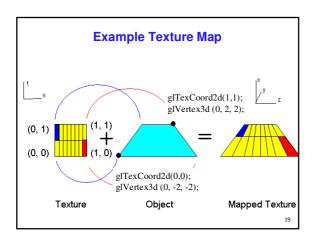
11

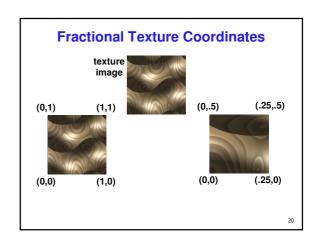
Reading

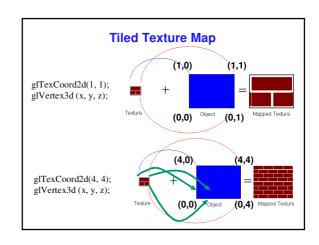

- FCG Chapter 10
- Red Book Chapter Texture Mapping






Texture Mapping


- introduced to increase realism
 - lighting/shading models not enough
- hide geometric simplicity
 - images convey illusion of geometry
 - map a brick wall texture on a flat polygon
 - create bumpy effect on surface
- associate 2D information with 3D surface
 - point on surface corresponds to a point in texture
 - "paint" image onto polygon



Texture Lookup: Tiling and Clamping

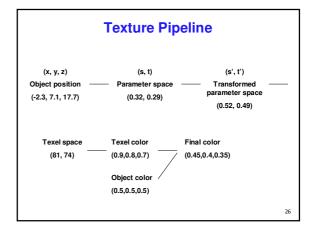
- what if s or t is outside the interval [0...1]?
- multiple choices
 - use fractional part of texture coordinates
 - cyclic repetition of texture to tile whole surface glTexParameteri(..., GL_TEXTURE_WRAP_S, GL_REPEAT, GL_TEXTURE_WRAP_T, GL_REPEAT, ...)
 - clamp every component to range [0...1]
 - re-use color values from texture image border gITexParameteri(..., GL_TEXTURE_WRAP_S, GL_CLAMP, GL_TEXTURE_WRAP_T, GL_CLAMP, ...)

21

Demo

23

Texture Coordinate Transformation


- motivation
 - change scale, orientation of texture on an object
- approach
 - texture matrix stack
 - transforms specified (or generated) tex coords
 glMatrixMode(GL_TEXTURE);
 glLoadIdentity();
 glRotate();

...

- more flexible than changing (s,t) coordinates
- [demo]

Texture Functions

- once have value from the texture map, can:
 - directly use as surface color: GL_REPLACE
 - throw away old color, lose lighting effects
 - modulate surface color: GL_MODULATE
 - multiply old color by new value, keep lighting info
 - texturing happens after lighting, not relit
 - use as surface color, modulate alpha: GL_DECAL
 - like replace, but supports texture transparency
 - blend surface color with another: GL_BLEND
 - new value controls which of 2 colors to use
 - indirection, new value not used directly for coloring
- specify with glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, <mode>)

Texture Objects and Binding

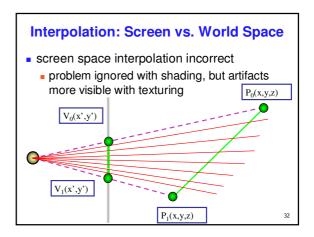
- texture object
 - an OpenGL data type that keeps textures resident in memory and provides identifiers to easily access
 - provides efficiency gains over having to repeatedly load and reload a texture
 - you can prioritize textures to keep in memory
 - OpenGL uses least recently used (LRU) if no priority is assigned
- texture binding
 - which texture to use right now
 - switch between preloaded textures

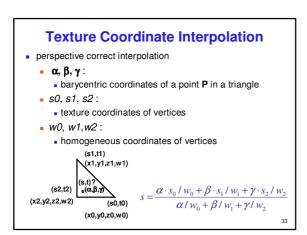
Basic OpenGL Texturing

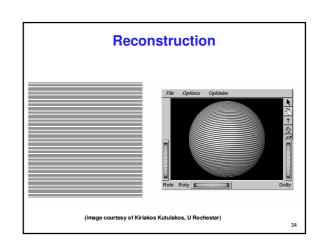
- create a texture object and fill it with texture data:
 - glGenTextures(num, &indices) to get identifiers for the obiects
 - glBindTexture(GL_TEXTURE_2D, identifier) to bind
 - following texture commands refer to the bound texture
 - glTexParameteri (GL_TEXTURE_2D, ..., ...) to specify parameters for use when applying the texture
 - glTexImage2D (GL_TEXTURE_2D,) to specify the texture data (the image itself)
- enable texturing: glEnable(GL TEXTURE 2D)
- state how the texture will be used:
- - glTexEnvf(...)
- specify texture coordinates for the polygon:
 - use glTexCoord2f(s,t) before each vertex:
 - qlTexCoord2f(0,0); qlVertex3f(x,v,z);

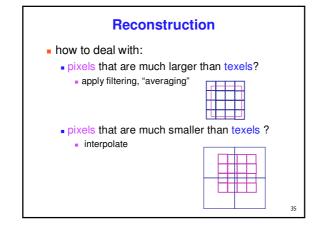
Low-Level Details

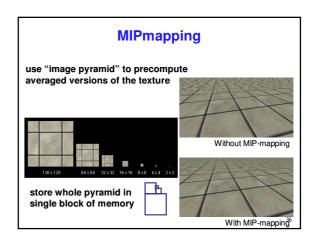
- large range of functions for controlling layout of texture data
 - state how the data in your image is arranged
 - e.g.: qlPixelStorei(GL_UNPACK_ALIGNMENT, 1) tells OpenGL not to skip bytes at the end of a row
 - you must state how you want the texture to be put in memory: how many bits per "pixel", which channels,...
- textures must be square and size a power of 2
 - common sizes are 32x32, 64x64, 256x256
 - smaller uses less memory, and there is a finite amount of texture memory on graphics cards
- ok to use texture template sample code for project 4
- http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=09

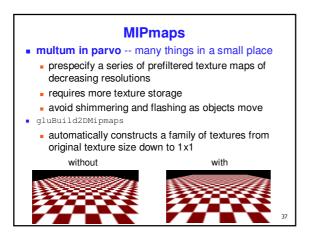

Texture Mapping

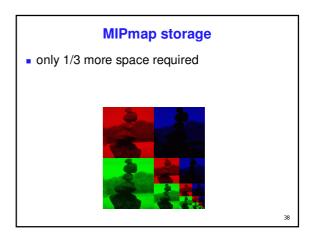

- texture coordinates
 - specified at vertices

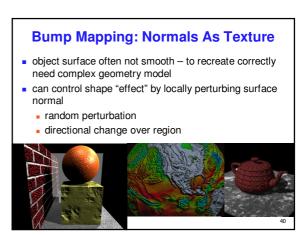

glTexCoord2f(s,t); glVertexf(x,y,z);

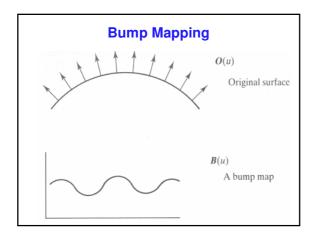

- interpolated across triangle (like R,G,B,Z)
 - ...well not quite!

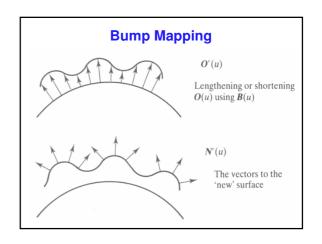

Texture Mapping • texture coordinate interpolation • perspective foreshortening problem

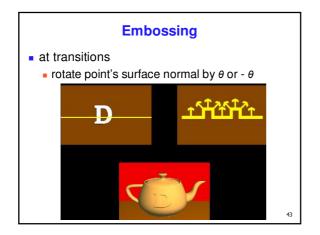


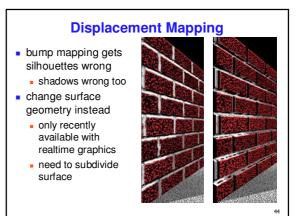











Texture Parameters in addition to color can control other material/object properties surface normal (bump mapping) reflected color (environment mapping)



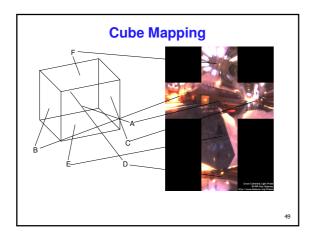
Environment Mapping

- cheap way to achieve reflective effect
 - generate image of surrounding
 - map to object as texture

Environment Mapping

- used to model object that reflects surrounding textures to the eye
 - movie example: cyborg in Terminator 2
- different approaches
 - sphere, cube most popular

 - OpenGL support
 GL_SPHERE_MAP, GL_CUBE_MAP
 - others possible too


Sphere Mapping

- texture is distorted fish-eye view
 - point camera at mirrored sphere
 - spherical texture mapping creates texture coordinates that correctly index into this texture map

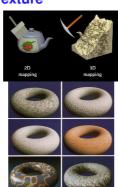
Cube Mapping • 6 planar textures, sides of cube point camera in 6 different directions, facing out from origin

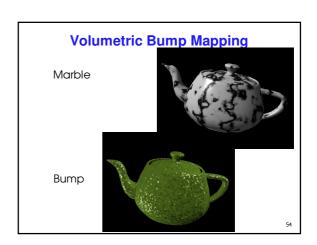
Cube Mapping

- direction of reflection vector r selects the face of the cube to be indexed
 - co-ordinate with largest magnitude
 - e.g., the vector (-0.2, 0.5, -0.84) selects the -Z face
 - remaining two coordinates (normalized by the 3rd coordinate) selects the pixel from the face.
 - e.g., (-0.2, 0.5) gets mapped to (0.38, 0.80).
- difficulty in interpolating across faces

50

Blinn/Newell Latitude Mapping


Review: Texture Objects and Binding


- texture objects
 - texture management: switch with bind, not reloading
 - can prioritize textures to keep in memory
 - Q: what happens to textures kicked out of memory?
 - A: resident memory (on graphics card) vs. nonresident (on CPU)
 - details hidden from developers by OpenGL

52

Volumetric Texture

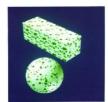
- define texture pattern over 3D domain - 3D space containing the object
 - texture function can be digitized or procedural
 - for each point on object compute texture from point location in space
- common for natural material/irregular textures (stone, wood,etc...)

Volumetric Texture Principles

- 3D function ρ
 - $\rho = \rho(x,y,z)$
- texture space 3D space that holds the texture (discrete or continuous)
- rendering: for each rendered point P(x,y,z) compute ρ(x,y,z)
- volumetric texture mapping function/space transformed with objects

55

Procedural Textures


- generate "image" on the fly, instead of loading from disk
 - often saves space
 - allows arbitrary level of detail

56

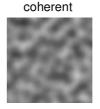
Procedural Texture Effects: Bombing

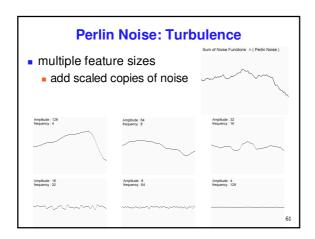
- randomly drop bombs of various shapes, sizes and orientation into texture space (store data in table)
 - for point P search table and determine if inside shape
 - if so, color by shape
 - otherwise, color by objects color

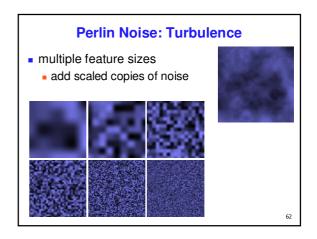
function boring_marble(point)
 x = point.x;
 return marble_color(sin(x));
 // marble_color maps scalars to colors

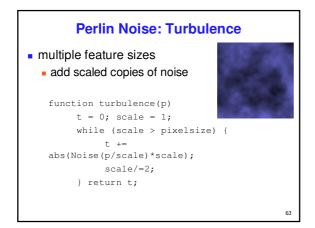
Perlin Noise: Procedural Textures

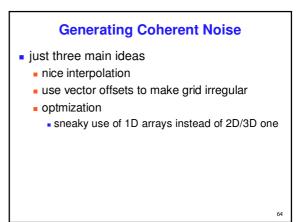
- several good explanations
 - FCG Section 10.1
 - http://www.noisemachine.com/talk1
 - http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
 - http://www.robo-murito.net/code/perlin-noise-math-faq.html

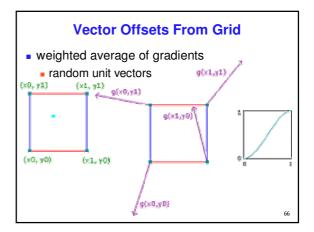



ttp://mrl nyu edu/~perlin/planet/


Perlin Noise: Coherency

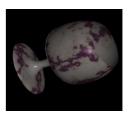

smooth not abrupt changes





Optimization

- save memory and time
- conceptually:
 - 2D or 3D grid
 - populate with random number generator
- actually:
 - precompute two 1D arrays of size n (typical size 256)
 - random unit vectors
 - permutation of integers 0 to n-1
 - lookup
 - $g(i, j, k) = G[(i + P[(j + P[k]) \mod n]) \mod n]$


67

Perlin Marble

• use turbulence, which in turn uses noise:

function marble(point)
x = point.x + turbulence(point);
return marble_color(sin(x))

68

Procedural Approaches

69

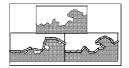
Procedural Modeling

- textures, geometry
 - nonprocedural: explicitly stored in memory
- procedural approach
 - compute something on the fly
 - often less memory cost
 - visual richness
- fractals, particle systems, noise

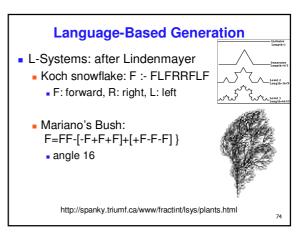
__

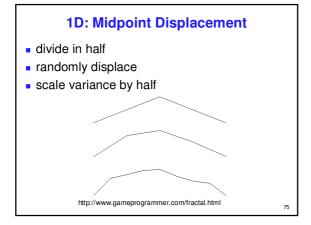
Fractal Landscapes

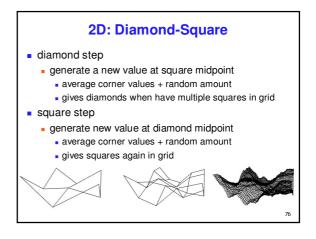
- fractals: not just for "showing math"
 - triangle subdivision
 - vertex displacement
 - recursive until termination condition



http://www.fractal-landscapes.co.uk/images.html


71


Self-Similarity


• infinite nesting of structure on all scales

Fractal Dimension D = log(N)/log(r) N = measure, r = subdivision scale Hausdorff dimension: noninteger Koch snowflake coastline of Britain D = log(N)/log(r) Level 2 Level 3 Level 3 Level 3 Level 4 Length-16/9 Length-16/

Particle Systems

- loosely defined
 - modeling, or rendering, or animation
- key criteria
 - collection of particles
 - random element controls attributes
 - position, velocity (speed and direction), color, lifetime, age, shape, size, transparency
 - predefined stochastic limits: bounds, variance, type of distribution

77

Particle System Examples

- objects changing fluidly over time
 - fire, steam, smoke, water
- objects fluid in form
 - grass, hair, dust
- physical processes
 - waterfalls, fireworks, explosions
- group dynamics: behavioral
 - birds/bats flock, fish school, human crowd, dinosaur/elephant stampede

Particle Systems Demos

- general particle systems
 - http://www.wondertouch.com
- boids: bird-like objects
 - http://www.red3d.com/cwr/boids/

79

Particle Life Cycle

- generation
 - randomly within "fuzzy" location
 - initial attribute values: random or fixed
- dynamics
 - attributes of each particle may vary over time
 - color darker as particle cools off after explosion
 - can also depend on other attributes
 - position: previous particle position + velocity + time
- death
 - age and lifetime for each particle (in frames)
 - or if out of bounds, too dark to see, etc

8

Particle System Rendering

- expensive to render thousands of particles
- simplify: avoid hidden surface calculations
 - each particle has small graphical primitive (blob)
 - pixel color: sum of all particles mapping to it
- some effects easy
 - temporal anti-aliasing (motion blur)
 - normally expensive: supersampling over time
 - position, velocity known for each particle
 - just render as streak

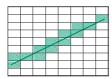
81

Procedural Approaches Summary

- Perlin noise
- fractals
- L-systems
- particle systems
- not at all a complete list!
 - big subject: entire classes on this alone

__

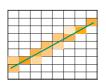
Sampling


83

Samples

- most things in the real world are continuous
- everything in a computer is discrete
- the process of mapping a continuous function to a discrete one is called sampling
- the process of mapping a discrete function to a continuous one is called reconstruction
- the process of mapping a continuous variable to a discrete one is called quantization
- rendering an image requires sampling and quantization
- displaying an image involves reconstruction

Line Segments


- we tried to sample a line segment so it would map to a 2D raster display
- we quantized the pixel values to 0 or 1
- we saw stair steps, or jaggies

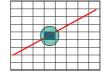
85

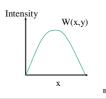
Line Segments

- instead, quantize to many shades
- but what sampling algorithm is used?

06

Unweighted Area Sampling


- shade pixels wrt area covered by thickened line
- equal areas cause equal intensity, regardless of distance from pixel center to area
 - rough approximation formulated by dividing each pixel into a finer grid of pixels
- primitive cannot affect intensity of pixel if it does not intersect the pixel

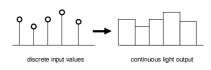


87

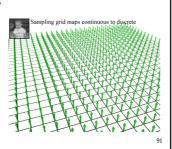
Weighted Area Sampling

- intuitively, pixel cut through the center should be more heavily weighted than one cut along corner
- weighting function, W(x,y)
 - specifies the contribution of primitive passing through the point (x, y) from pixel center

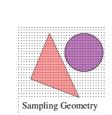
Images

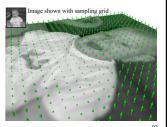

 an image is a 2D function I(x, y) that specifies intensity for each point (x, y)

89

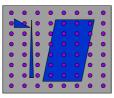

Image Sampling and Reconstruction

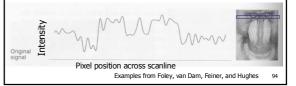
- convert continuous image to discrete set of samples
- display hardware reconstructs samples into continuous image
 - finite sized source of light for each pixel


Point Sampling an Image


- simplest sampling is on a grid
- sample depends solely on value at grid points

Point Sampling

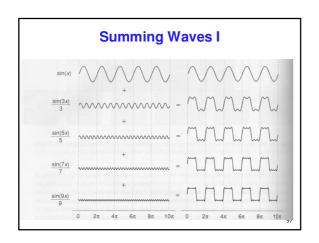

 multiply sample grid by image intensity to obtain a discrete set of points, or samples.

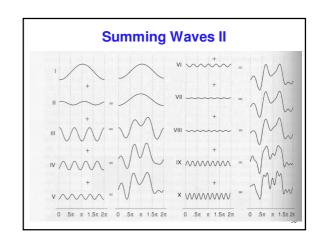

Sampling Errors

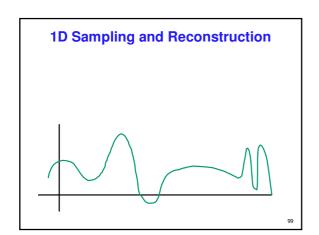
- some objects missed entirely, others poorly sampled
 - could try unweighted or weighted area sampling
 - but how can we be sure we show everything?
- need to think about entire class of solutions!

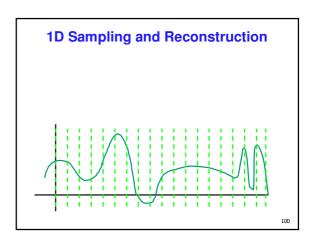
Image As Signal

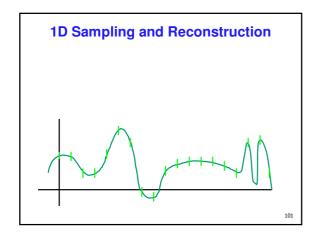
- image as spatial signal
- 2D raster image
 - discrete sampling of 2D spatial signal
- 1D slice of raster image
 - discrete sampling of 1D spatial signal

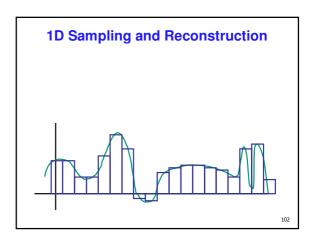

Sampling Theory

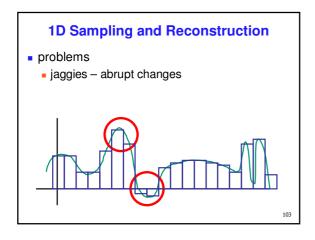

- how would we generate a signal like this out of simple building blocks?
- theorem
 - any signal can be represented as an (infinite) sum of sine waves at different frequencies

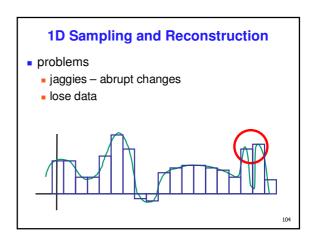

Sampling Theory in a Nutshell

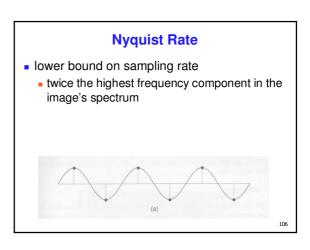

- terminology
 - bandwidth length of repeated sequence on infinite signal
 - frequency 1/bandwidth (number of repeated sequences in unit length)
- example sine wave
 - bandwidth = 2π
 - frequency = $1/2\pi$

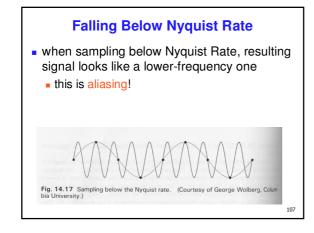

 $\sin(t)$

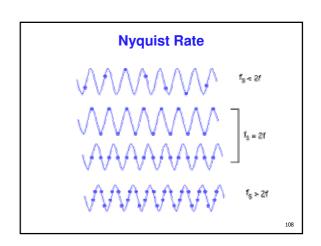




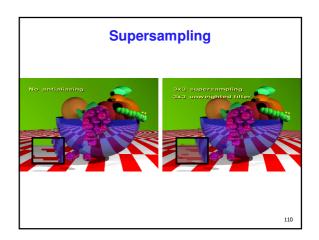


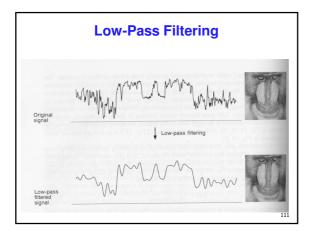


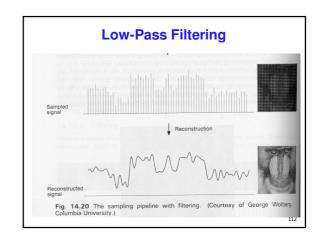


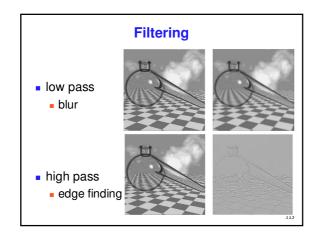


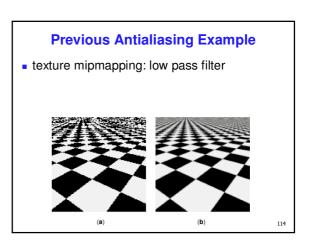
Sampling Theorem continuous signal can be completely recovered from its samples iff sampling rate greater than twice maximum frequency present in signal - Claude Shannon








Aliasing


- incorrect appearance of high frequencies as low frequencies
- to avoid: antialiasing
 - supersample
 - sample at higher frequency
 - low pass filtering
 - remove high frequency function parts
 - aka prefiltering, band-limiting

