
University of British Columbia
CPSC 314 Computer Graphics

May-June 2005

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005

Picking, Collision

Week 4, Tue May 31

�

News

� extension for P4 proposals
� now due Thu 6pm, not Wed 4pm

� rearranging lecture schedule slightly
� picking, collision today
� textures Thursday (no change)
� hidden surfaces next week

� reminder
� final Thu 6/16, P4 due Sat 6/18

�

Common Mistakes on H2

� lookat point vs. gaze vector (eye – lookat)
� remember that NDC coordinate range is 2

(from -1 to 1), not 1
� remember homogenise and/or normalize

points as needed
� on derivations, need more than just restating

definition
� don’t forget to flip y axis when converting to

display coords

�

Midterm

� picture IDs out and face up, please
� sit where there is a test paper
� don’t open paper until you get the word

�

Review: Compositing

�

Correction/Review: Premultiplying Colors
� specify opacity with alpha channel: (r,g,b,α)

� α=1: opaque, α=.5: translucent, α=0: transparent

� A over B
� C = αA + (1-α)B

� but what if B is also partially transparent?
� C = αA + (1-α) βB = βB + αA + βB - α βB
� γ = β + (1-β)α = β + α – αβ

� 3 multiplies, different equations for alpha vs. RGB

� premultiplying by alpha
� C’ = γ C, B’ = βB, A’ = αA

� C’ = B’ + A’ - αB’
� γ = β + α – αβ

� 1 multiply to find C, same equations for alpha and RGB

�

Review: Clipping

� analytically calculating the portions of
primitives within the viewport

�

Review: Clipping Lines To Viewport
� combining trivial accepts/rejects

� trivially accept lines with both endpoints inside all edges
of the viewport

� trivially reject lines with both endpoints outside the same
edge of the viewport

� otherwise, reduce to trivial cases by splitting into two
segments

�

Review: Cohen-Sutherland Line Clipping

� outcodes
� 4 flags encoding position of a point relative to

top, bottom, left, and right boundary

x=x=xxminmin x=x=xxmaxmax

y=y=yyminmin

y=y=yymaxmax

00000000

10101010 10001000 10011001

00100010 00010001

01100110 01000100 01010101

p1p1

p2p2

p3p3

�OC(p1)== 0 &&
OC(p2)==0

�trivial accept
�(OC(p1) &
OC(p2))!= 0

�trivial reject

	

Review: Polygon Clipping

� not just clipping all boundary lines
� may have to introduce new line segments

		

Review: Sutherland-Hodgeman Clipping

� for each viewport edge
� clip the polygon against the edge equation
� after doing all edges, the polygon is fully clipped

� for each polygon vertex
� decide what to do based on 4 possibilities

� is vertex inside or outside?
� is previous vertex inside or outside?

	�

Review: Sutherland-Hodgeman Clipping

� edge from p[i-1] to p[i] has four cases
� decide what to add to output vertex list

inside outside

p[i]

p[i] output

inside outside

no output

inside outside

i output

inside outside

i output
p[i] output

p[i]

p[i] p[i]p[i-1]

p[i-1] p[i-1]

p[i-1]

	�

Clarification: Degenerate Edges

� Q from last time: how does S-H know that
there are two disconnected polygons if all it
has is a vertex list?

� A: end up with one connected polygon that
has degenerate edges

	�

Clarification: Degenerate Edges

A

B

CD

E

	�

Clarification: Degenerate Edges

A

B

CD

E

	�

Clarification: Degenerate Edges

B

C

A

D

E

	�

Clarification: Degenerate Edges

B

C

A

D

E

	�

Clarification: Degenerate Edges

A

B

C

F

E D

	�

Clarification: Degenerate Edges

A

B

C

F

E D

�

Clarification: Degenerate Edges

A

B

C

F

E D

�	

Clarification: Degenerate Edges

B

C

E D

AF

��

Review: Splines

� spline is parametric
curve defined by control
points
� knots: control points

that lie on curve
� engineering drawing:

spline was flexible
wood, control points
were physical weights

A Duck (weight)

Ducks trace out curve

��

Review: Hermite Spline

� user provides
� endpoints
� derivatives at endpoints

[]
�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

−
−
−

−

′′=

10121
0011
1032

0032
2

3

0101 t

t

t

xxxxx

��

Review: Bézier Curves

� four control points, two of which are knots
� more intuitive definition than derivatives

� curve will always remain within convex hull
(bounding region) defined by control points

��

Review: Basis Functions

� point on curve obtained by multiplying each control
point by some basis function and summing

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x1
x0
x'1
x'0

��

Review: Comparing Hermite and Bézier

0

0.2

0.4

0.6

0.8

1

1.2

B0
B1
B2
B3

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x1
x0
x'1
x'0

BézierHermite

��

Review: Sub-Dividing Bézier Curves

� find the midpoint of the line joining M012, M123.
call it M0123

P0

P1 P2

P3

M01

M12

M23

M012 M123
M0123

��

Review: de Casteljau’s Algorithm

� can find the point on Bézier curve for any parameter
value t with similar algorithm
� for t=0.25, instead of taking midpoints take points 0.25 of the

way

P0

P1
P2

P3

M01

M12

M23

t=0.25

demo: www.saltire.com/applets/advanced_geometry/spline/spline.htm

��

Review: Continuity

� continuity definitions
� C0: share join point
� C1: share continuous derivatives
� C2: share continuous second derivatives

� piecewise Bézier: no continuity guarantees

�

Review: B-Spline

� C0, C1, and C2 continuous
� piecewise: locality of control point influence

�	

Picking

��

Reading

� Red Book
� Selection and Feedback Chapter

� all
� Now That You Know Chapter

� only Object Selection Using the Back Buffer

��

Interactive Object Selection

� move cursor over object, click
� how to decide what is below?

� ambiguity
� many 3D world objects map to same 2D point

� four common approaches
� manual ray intersection
� bounding extents
� backbuffer color coding
� selection region with hit list

��

Manual Ray Intersection

� do all computation at application level
� map selection point to a ray
� intersect ray with all objects in scene.

� advantages
� no library dependence

x
VCS

y

��

Manual Ray Intersection

� do all computation at application level
� map selection point to a ray
� intersect ray with all objects in scene.

� advantages
� no library dependence

� disadvantages
� difficult to program
� slow: work to do depends on total number and

complexity of objects in scene

��

Bounding Extents

� keep track of axis-aligned bounding
rectangles

� advantages
� conceptually simple
� easy to keep track of boxes in world space

��

Bounding Extents

� disadvantages
� low precision
� must keep track of object-rectangle relationship

� extensions
� do more sophisticated bound bookkeeping

� first level: box check. second level: object check

��

Backbuffer Color Coding

� use backbuffer for picking
� create image as computational entity
� never displayed to user

� redraw all objects in backbuffer
� turn off shading calculations
� set unique color for each pickable object

� store in table
� read back pixel at cursor location

� check against table

��

� advantages
� conceptually simple
� variable precision

� disadvantages
� introduce 2x redraw delay
� backbuffer readback very slow

Backbuffer Color Coding

�

for(int i = 0; i < 2; i++)
for(int j = 0; j < 2; j++) {

glPushMatrix();
switch (i*2+j) {

case 0: glColor3ub(255,0,0);break;
case 1: glColor3ub(0,255,0);break;
case 2: glColor3ub(0,0,255);break;
case 3: glColor3ub(250,0,250);break;

}
glTranslatef(i*3.0,0,-j * 3.0)
glCallList(snowman_display_list);
glPopMatrix();

}

glColor3f(1.0f, 1.0f, 1.0f);
for(int i = 0; i < 2; i++)

for(int j = 0; j < 2; j++) {
glPushMatrix();
glTranslatef(i*3.0,0,-j * 3.0);
glColor3f(1.0f, 1.0f, 1.0f);
glCallList(snowman_display_list);
glPopMatrix();

}

Backbuffer Example

http://www.lighthouse3d.com/opengl/picking/

�	

Select/Hit

� use small region around cursor for viewport
� assign per-object integer keys (names)
� redraw in special mode
� store hit list of objects in region
� examine hit list

� OpenGL support

��

Viewport

� small rectangle around cursor
� change coord sys so fills viewport

� why rectangle instead of point?
� people aren’t great at positioning mouse

� Fitts’s Law: time to acquire a target is function
of the distance to and size of the target

� allow several pixels of slop

��

� tricky to compute
� invert viewport matrix, set up new orthogonal

projection
� simple utility command

� gluPickMatrix(x,y,w,h,viewport)
� x,y: cursor point
� w,h: sensitivity/slop (in pixels)

� push old setup first, so can pop it later

Viewport

��

Render Modes

� glRenderMode(mode)

� GL_RENDER: normal color buffer
� default

� GL_SELECT: selection mode for picking

� (GL_FEEDBACK: report objects drawn)

��

Name Stack

� “names” are just integers
glInitNames()

� flat list
glLoadName(name)

� or hierarchy supported by stack
glPushName(name), glPopName

� can have multiple names per object

��

for(int i = 0; i < 2; i++) {
glPushName(i);
for(int j = 0; j < 2; j++) {

glPushMatrix();
glPushName(j);
glTranslatef(i*10.0,0,j * 10.0);

glPushName(HEAD);
glCallList(snowManHeadDL);
glLoadName(BODY);
glCallList(snowManBodyDL);
glPopName();

glPopName();
glPopMatrix();

}
glPopName();

}

Hierarchical Names Example

http://www.lighthouse3d.com/opengl/picking/

��

Hit List

� glSelectBuffer(buffersize, *buffer)
� where to store hit list data

� on hit, copy entire contents of name stack to output
buffer.

� hit record
� number of names on stack
� minimum and minimum depth of object vertices

� depth lies in the z-buffer range [0,1]
� multiplied by 2^32 -1 then rounded to nearest int

��

Integrated vs. Separate Pick Function

� integrate: use same function to draw and pick
� simpler to code
� name stack commands ignored in render mode

� separate: customize functions for each
� potentially more efficient
� can avoid drawing unpickable objects

��

Select/Hit

� advantages
� faster

� OpenGL support means hardware accel
� only do clipping work, no shading or rasterization

� flexible precision
� size of region controllable

� flexible architecture
� custom code possible, e.g. guaranteed frame rate

� disadvantages
� more complex

�

Hybrid Picking

� select/hit approach: fast, coarse
� object-level granularity

� manual ray intersection: slow, precise
� exact intersection point

� hybrid: both speed and precision
� use select/hit to find object
� then intersect ray with that object

�	

OpenGL Picking Hints

� gluUnproject
� transform window coordinates to object coordinates

given current projection and modelview matrices
� use to create ray into scene from cursor location
� call gluUnProject twice with same (x,y) mouse

location
� z = near: (x,y,0)
� z = far: (x,y,1)
� subtract near result from far result to get direction

vector for ray

� use this ray for line/polygon intersection

��

Picking and P4

� you must implement true 3D picking!
� you will not get credit if you just use 2D

information

��

Collision Detection

��

Collision Detection

� do objects collide/intersect?
� static, dynamic

� simple case: picking as collision detection
� check if ray cast from cursor position collides

with any object in scene
� simple shooting

� projectile arrives instantly, zero travel time

� better: projectile and target move over time
� see if collides with object during trajectory

��

Collision Detection Applications
� determining if player hit wall/floor/obstacle

� terrain following (floor), maze games (walls)
� stop them walking through it

� determining if projectile has hit target
� determining if player has hit target

� punch/kick (desired), car crash (not desired)
� detecting points at which behavior should change

� car in the air returning to the ground
� cleaning up animation

� making sure a motion-captured character’s feet do not pass
through the floor

� simulating motion
� physics, or cloth, or something else

��

From Simple to Complex
� boundary check

� perimeter of world vs. viewpoint or objects
� 2D/3D absolute coordinates for bounds
� simple point in space for viewpoint/objects

� set of fixed barriers
� walls in maze game

� 2D/3D absolute coordinate system
� set of moveable objects

� one object against set of items
� missile vs. several tanks

� multiple objects against each other
� punching game: arms and legs of players
� room of bouncing balls

��

Naive General Collision Detection

� for each object i containing polygons p
� test for intersection with object j containing

polygons q
� for polyhedral objects, test if object i

penetrates surface of j
� test if vertices of i straddle polygon q of j

� if straddle, then test intersection of polygon q
with polygon p of object i

� very expensive! O(n2)

��

Choosing an Algorithm
� primary factor: geometry of colliding objects

� “object” could be a point, or line segment
� object could be specific shape: sphere, triangle, cube
� objects can be concave/convex, solid/hollow,

deformable/rigid, manifold/non-manifold
� secondary factor: way in which objects move

� different algorithms for fast or slow moving objects
� different algorithms depending on how frequently the

object must be updated
� other factors: speed, simplicity, robustness

��

Robustness
� for our purposes, collision detection code is robust if

� doesn’t crash or infinite loop on any case that might
occur

� better if it doesn’t fail on any case at all, even if the
case is supposed to be “impossible”

� always gives some answer that is meaningful, or
explicitly reports that it cannot give an answer

� can handle many forms of geometry
� can detect problems with the input geometry,

particularly if that geometry is supposed to meet
some conditions (such as convexity)

� robustness is remarkably hard to obtain

�

Types of Geometry
� points
� lines, rays and line segments
� spheres, cylinders and cones
� cubes, rectilinear boxes

� AABB: axis aligned bounding box
� OBB: oriented bounding box, arbitrary alignment

� k-dops – shapes bounded by planes at fixed orientations
� convex meshes – any mesh can be triangulated

� concave meshes can be broken into convex chunks, by hand
� triangle soup
� more general curved surfaces, but often not used in games

8-dop

AABB

OBB

�	

Fundamental Design Principles

� several principles to consider when designing
collision detection strategy
� if more than one test available, with different

costs: how do you combine them?
� how do you avoid unnecessary tests?
� how do you make tests cheaper?

��

Fundamental Design Principles

� fast simple tests first, eliminate many potential
collisions
� test bounding volumes before testing individual

triangles
� exploit locality, eliminate many potential collisions

� use cell structures to avoid considering distant objects
� use as much information as possible about geometry

� spheres have special properties that speed collision
testing

� exploit coherence between successive tests
� things don’t typically change much between two

frames

��

Player-Wall Collisions

� first person games must prevent the player
from walking through walls and other
obstacles

� most general case: player and walls are
polygonal meshes

� each frame, player moves along path not
known in advance
� assume piecewise linear: straight steps on

each frame
� assume player’s motion could be fast

��

Stupid Algorithm

� on each step, do a general mesh-to-mesh
intersection test to find out if the player
intersects the wall

� if they do, refuse to allow the player to move
� problems with this approach? how can we

improve:
� in speed?
� in accuracy?
� in response?

��

Ways to Improve

� even seemingly simple problem of
determining if the player hit the wall reveals a
wealth of techniques
� collision proxies
� spatial data structures to localize
� finding precise collision times
� responding to collisions

��

Collision Proxies

� proxy: something that takes place of real object
� cheaper than general mesh-mesh intersections

� collision proxy (bounding volume) is piece of
geometry used to represent complex object for
purposes of finding collision
� if proxy collides, object is said to collide
� collision points mapped back onto original object

� good proxy: cheap to compute collisions for, tight fit
to the real geometry

� common proxies: sphere, cylinder, box, ellipsoid
� consider: fat player, thin player, rocket, car …

��

Why Proxies Work

� proxies exploit facts about human perception
� we are extraordinarily bad at determining

correctness of collision between two complex
objects

� the more stuff is happening, and the faster it
happens, the more problems we have
detecting errors

� players frequently cannot see themselves
� we are bad at predicting what should happen

in response to a collision

��

Trade-off in Choosing Proxies

increasing complexity & tightness of fit

decreasing cost of (overlap tests + proxy update)

AABB OBBSphere Convex Hull6-dop

��

Pair Reduction

� want proxy for any moving object requiring collision
detection

� before pair of objects tested in any detail, quickly
test if proxies intersect

� when lots of moving objects, even this quick
bounding sphere test can take too long: N2 times if
there are N objects

� reducing this N2 problem is called pair reduction
� pair testing isn’t a big issue until N>50 or so…

�

Spatial Data Structures

� can only hit something that is close
� spatial data structures tell you what is close

to object
� uniform grid, octrees, kd-trees, BSP trees,

OBB trees, k-dop trees
� for player-wall problem, typically use same

spatial data structure as for rendering
� BSP trees most common

�	

Uniform Grids

��

Bounding Volume Hierarchies

��

Octrees

��

KD Trees

��

BSP Trees

��

OBB Trees

��

K-Dops

��

Testing BVH’s
TestBVH(A,B) {

if(not overlap(ABV, BBV) return FALSE;
else if(isLeaf(A)) {

if(isLeaf(B)) {
for each triangle pair (Ta,Tb)

if(overlap(Ta,Tb)) AddIntersectionToList();
}
else {

for each child Cb of B
TestBVH(A,Cb);

}
}
else {

for each child Ca of A
TestBVH(Ca,B)

}
}

��

Optimization Structures

� all of these optimization structures can be
used in either 2D or 3D

� packing in memory may affect caching and
performance

�

Exploiting Coherence

� player normally doesn’t move far between
frames

� cells they intersected the last time are
� probably the same cells they intersect now
� or at least they are close

� aim is to track which cells the player is in
without doing a full search each time

� easiest to exploit with a cell portal structure

�	

Cell-Portal Collisions
� keep track which cell/s player is currently intersecting

� can have more than one if the player straddles a cell boundary
� always use a proxy (bounding volume) for tracking cells
� also keep track of which portals the player is straddling

� player can only enter new cell through portal
� on each frame

� intersect the player with the current cell walls and contents
(because they’re solid)

� intersect the player with the portals
� if the player intersects a portal, check that they are considered

“in” the neighbor cell
� if the player no longer straddles a portal, they have just left a

cell

��

Precise Collision Times
� generally a player will go from not

intersecting to interpenetrating in the
course of a frame

� we typically would like the exact collision
time and place
� response is generally better
� interpenetration may be algorithmically hard

to manage
� interpenetration is difficult to quantify
� numerical root finding problem

� more than one way to do it:
� hacked (but fast) clean up
� interval halving (binary search)

��

Defining Penetration Depth

� more than one way to define
penetration depth
� distance to move back along

incoming path to avoid collision
� may be difficult to compute

� minimum distance to move in any
direction to avoid collision
� often also difficult to compute
� distance in some particular

direction
� but what direction?
� “normal” to penetration surface

��

Hacked Clean Up

� know time t, position x, such that
penetration occurs

� simply move position so that objects
just touch, leave time the same

� multiple choices for how to move:
� back along motion path
� shortest distance to avoid penetration
� some other option

��

Interval Halving
� search through time for the point at which the objects collide
� know when objects were not penetrating (last frame)
� know when they are penetrating (this frame)
� thus have upper and lower bound on collision time

� later than last frame, earlier than this frame
� do a series of tests to bring bounds closer together
� each test checks for collision at midpoint of current time

interval
� if collision, midpoint becomes new upper bound
� If not, midpoint becomes new lower bound

� keep going until the bounds are the same (or as accurate as
desired)

��

Interval Halving Example

t=0

t=1

t=0.5

t=1

t=0.5
t=0.75

t=0.5
t=0.625

t=0.5625

��

Interval Halving Discussion

� advantages
� finds accurate collisions in time and space,

which may be essential
� not too expensive

� disadvantages
� takes longer than hack (but note that time is

bounded, and you get to control it)
� may not work for fast moving objects and thin

obstacles
� method of choice for many applications

��

Temporal Sampling

� subtle point: collision detection is about the
algorithms for finding collisions in time as
much as space

� temporal sampling
� aliasing: can miss collision completely!

��

Managing Fast Moving Objects
� movement line

� test line segment representing motion of object center
� pros: works for large obstacles, cheap
� cons: may still miss collisions. how?

� conservative prediction
� only move objects as far as you can be sure to catch collision
� largest conservative step is smallest distance divided by the

highest speed - clearly could be very small
� assume maximum velocity, smallest feature size
� increase temporal and spatial sampling rate

� pros: will find all collisions
� cons: may be expensive, how to pick step size

� simple alternative: just miss the hard cases
� player may not notice!

�

Collision Response

� frustrating to just stop
� for player motions, often best thing to do is

move player tangentially to obstacle
� do recursively to ensure all collisions caught

� find time and place of collision
� adjust velocity of player
� repeat with new velocity, start time, start

position (reduced time interval)
� handling multiple contacts at same time

� find a direction that is tangential to all contacts

�	

Related Reading

� Real-Time Rendering
� Tomas Moller and Eric Haines
� on reserve in CICSR reading room

��

Acknowledgement

� slides borrow heavily from
� Stephen Chenney, (UWisc CS679)
� http://www.cs.wisc.edu/~schenney/courses/cs679-f2003/lectures/cs679-22.ppt

� slides borrow lightly from
� Steve Rotenberg, (UCSD CSE169)
� http://graphics.ucsd.edu/courses/cse169_w05/CSE169_17.ppt

