University of British Columbia
CPSC 314 Computer Graphics
May-June 2005

Tamara Munzner
Picking, Collision

Week 4, Tue May 31

hitp://www.ugrad.cs.ubc.ca/~cs314/Vmay2005

News

= extension for P4 proposals
= how due Thu 6pm, not Wed 4pm
= rearranging lecture schedule slightly
= picking, collision today
= textures Thursday (no change)
= hidden surfaces next week
= reminder
= final Thu 6/16, P4 due Sat 6/18

Common Mistakes on H2

= lookat point vs. gaze vector (eye — lookat)

= remember that NDC coordinate range is 2
(from -1 to 1), not 1

= remember homogenise and/or normalize
points as needed

= On derivations, need more than just restating
definition

= don’t forget to flip y axis when converting to
display coords

Midterm

= picture IDs out and face up, please
= Sit where there is a test paper
= don't open paper until you get the word

Review: Compositing

Partially
transparent
Aand B

Conceptual
sub-pixel
overlay

B

Review: Premultiplying Colors

specify opacity with alpha channel: (r,g,b,o)
« a=1:0paque, a=.5: translucent, a=0: transparent

A overB
m C = (XA+ (1-OC)B

but what if B is also partially transparent?
« C=0A+(1-0) BB = BB+0¢A®-0¢BB

= Y=B+(APla=p+a—-ap
= 3 multiplies, different equations for alpha vs. RGB

premultiplying by alpha
« C=¢yC,B’ =8B, A’=0A

« C=B" +A’-0B’

« y=P+a—ap
= 1 multiply to find C, same equations for alpha and RGB

Review: Clipping

= analytically calculating the portions of
primitives within the viewport

—

o

Review: Clipping Lines To Viewport

= combining trivial accepts/rejects

=« trivially accept lines with both endpoints inside all edges
of the viewport

=« trivially lines with both endpoints

= otherwise, reduce to trivial cases by splitting into two
segments

T/

AN

Review: Cohen-Sutherland Line Clipping

s outcodes

= 4 flags encoding position of a point relative to
top, bottom, left, and right boundary

«OC(p1)==0 && 1010 1000 1001

OC(p2)==O p3 Y=Y max
o opl
strivial accept 0010 0000 0001

OC(p2))!=0 *p2 —
strivial reject 0110 0100 | 0101

Review: Polygon Clipping

= Not just clipping all boundary lines
= may have to introduce new line segments

—_
I

10

Review: Sutherland-Hodgeman Clipping

= for each viewport edge
= clip the polygon against the edge equation
= after doing all edges, the polygon is fully clipped

<l<f<R<i<]<

= for each polygon vertex

« decide what to do based on 4 possibilities
= IS vertex inside or outside?

= IS previous vertex inside or outside?
11

Review: Sutherland-Hodgeman Clipping

= edge from p[i-1]to p[i] has four cases
= decide what to add to output vertex list

side outside inside

p[i]x

I pl[i] output I
|

e

pli-1]
i output

outside

/

— i)

mside

e

I no output |

outside

pli]

pli-1]

iside outside

pli] pli-1]

ﬁ/

i output
pl[i] output

12

= Q from last time: how does S-H know that
there are two disconnected polygons if all it
has is a vertex list?

= A: end up with one connected polygon that
has degenerate edges

<

I

Clarification: Degenerate Edges

E A

//
\\

D C

14

Clarification: Degenerate Edges

/A
I\

15

Clarification: Degenerate Edges

16

Clarification: Degenerate Edges

17

Clarification: Degenerate Edges

18

Clarification: Degenerate Edges

F A

T

K
IN

E D

19

Clarification: Degenerate Edges

20

Clarification: Degenerate Edges

F A

K
AN

E D

21

Review: Splines

= Spline is parametric P g
curve defined by control i

points
= Knots: control points b
that lie on curve A Duck (weight)

= engineering drawing:
spline was flexible
wood, control points
were physical weights

Ducks trace out curve

22

Review: Hermite Spline

= user provides
= endpoints

= derivatives at endpoints

v=ly o xf x]

-2 3
2 -3
||
I =2

Vp,

P

-0 O O

o O = O

23

Review: Bezier Curves

= four control points, two of which are knots
= more intuitive definition than derivatives

= curve will always remain within convex hull
(bounding region) defined by control points

Vp; Usupport"
_0 "chord" P,
t=0 P o
b Bezier v
Hermite Specification 1 1 P

Specification

1

24

Review: Basis Functions

= point on curve obtained by multiplying each control
point by some basis function and summing

—x1

—x0
—Xx'1
—x'0

25

Review: Comparing Hermite and Bézier
Hermite Bézier

0.8 -
—x1 BO
—x'1 —B2

—x0| 0.4 — B3

0.4
1 1 2 g
7N / ! I\
710348 4 \ 2N
’ \ " \ / \
’ Y / \ / A 3
/ \ P \ / \
’ 3 p 1 / \
/ P \ /
/ N \
y \ i \ /
\J
/ Ny o \ 0 \ /
w3
Ve o
o v
Pz Ps 2
(a) (b) (c)
Py Pa
* []
P, Y N S
PR / ~
N - \ / N
LN \ P X
AR \
AN d

3
2
(d) (e) 26

Review: Sub-Dividing Bezier Curves

= find the midpoint of the line joining M,,,, M, ...
call it My, 5

27

Review: de Casteljau’s Algorithm

= can find the point on Bézier curve for any parameter
value t with similar algorithm

= for t=0.25, instead of taking midpoints take points 0.25 of the
way

demo: www.saltire.com/applets/advanced geometry/spline/spline.htm

28

Review: Continuity

= piecewise Beézier: no continuity guarantees

= continuity definitions /\/

O CO
O C1
O C2

Cy conti

share join point
share continuous derivatives

N
~_/

share continuous second derivatives

Cqy & C4 Lcrnllnulw Cy & Cy & C, continuity

VA

Review: B-Spline

= C,, Gy, and G, continuous
= piecewise: locality of control point influence

;
a (b)

30

Picking

31

Reading

s Red Book

= Selection and Feedback Chapter
= all
= Now That You Know Chapter
= only Object Selection Using the Back Buffer

32

Interactive Object Selection

= MOVe cursor over object, click

= how to decide what is below?
= ambiguity

= many 3D world objects map to same 2D point
= four common approaches

= manual ray intersection

= bounding extents

= backbuffer color coding

= selection region with hit list

33

Manual Ray Intersection

= do all computation at application level
= map selection point to a ray
= Intersect ray with all objects in scene.
= advantages
= no library dependence

34

Manual Ray Intersection

= do all computation at application level
= map selection point to a ray
= Intersect ray with all objects in scene.
= advantages
= no library dependence
= disadvantages
= difficult to program
= slow: work to do depends on total number and
complexity of objects in scene

35

Bounding Extents

= keep track of axis-aligned bounding
rectangles

= advantages
= conceptually simple
= easy to keep track of boxes in world space

36

Bounding Extents

= disadvantages

= low precision

= must keep track of object-rectangle relationship
= extensions

= do more sophisticated bound bookkeeping
= first level: box check. second level: object check

o @

37

Backbuffer Color Coding

= use backbuffer for picking
= create image as computational entity
= never displayed to user

= redraw all objects in backbuffer
= turn off shading calculations
= set unique color for each pickable object
= Store in table
= read back pixel at cursor location
= check against table

38

= advantages

Backbuffer Color Coding
= conceptually simple
= variable precision

= disadvantages

= introduce 2x redraw delay
= backbuffer readback very slow

39

Backbuffer Example

for(inti =0;i < 2; i++)

glColor3f(1.0f, 1.0f, 1.0f); for(intj=0;]<2;j++) {
for(inti=0;i < 2; i++) glPushMatrix();
for(int j = 0; j < 2; j++) { switch (i"2+]) {
glPushMatrix(); case 0: glColor3ub(255,0,0);break;
glTranslatef(i*3.0,0,-j * 3.0); case 1: glColor3ub(0,255,0);break;
glColor3f(1.0f, 1.0f, 1.0f); case 2: glColor3ub(0,0,255);break;
glCallList(snowman_display_list); ~ case 3: glColor3ub(250,0,250);break;

glPopMatrix(); }
\ glTranslatef(i*3.0,0,-j * 3.0)

glCallList(snowman_display_list);
glPopMatrix();

http://www.lighthouse3d.com/opengl/picking/

Select/Hit

use small region around cursor for viewport
assign per-object integer keys (names)
redraw In special mode

store hit list of objects in region

examine hit list

OpenGL support

41

Viewport

= small rectangle around cursor
= change coord sys so fills viewport

= Why rectangle instead of point?

= people aren’t great at positioning mouse

= Fitts’s Law: time to acquire a target is function
of the distance to and size of the target

= allow several pixels of slop

42

Viewport

= tricky to compute

= Invert viewport matrix, set up new orthogonal

projection
= simple utility command

= gluPickMatrix(x,y,w,h,viewport)
= X,Y: CUrsor point

@

= W,N: sensitivity/slop (in pixels)
= push old setup first, so can pop it later

43

Render Modes

= glIRenderMode(mode)

= GL_RENDER: normal color buffer
= default

= GL_SELECT: selection mode for picking

=« (GL_FEEDBACK: report objects drawn)

44

Name Stack

= ‘names” are just integers
glinitNames()

= flat list
glLoadName(name)

= Or hierarchy supported by stack

glPushName(name), glPopName
= can have multiple names per object

45

Hierarchical Names Example

for(inti=0;i<2;i++) {
glPushName(i);
for(intj=0;)< 2; j++) {
glPushMatrix();
glPushName());
glTranslatef(i*10.0,0,j * 10.0);
glPushName(HEAD);
glCallList(snowManHeadDL);
glLoadName(BODY);
glCallList(snowManBodyDL);
glPopName();
glPopName();
glPopMatrix();

}
glPopName();

}
http://www.lighthouse3d.com/opengl/picking/

Hit List

= glSelectBuffer(buffersize, *buffer)
=« Where to store hit list data

= 0N hit, copy entire contents of name stack to output
buffer.

= hit record
= humber of names on stack

= minimum and minimum depth of object vertices
= depth lies in the z-buffer range [0,1]
= multiplied by 2*32 -1 then rounded to nearest int

47

Integrated vs. Separate Pick Function

= integrate: use same function to draw and pick
= simpler to code
= hame stack commands ignored in render mode
= separate: customize functions for each
= potentially more efficient
= can avoid drawing unpickable objects

48

Select/Hit

= advantages
= faster
= OpenGL support means hardware accel
= only do clipping work, no shading or rasterization
= flexible precision
= Size of region controllable
= flexible architecture
= custom code possible, e.g. guaranteed frame rate
= disadvantages
= more complex

49

Hybrid Picking

» select/hit approach: fast, coarse
= Object-level granularity
= manual ray intersection: slow, precise
= exact intersection point
= hybrid: both speed and precision
= use select/hit to find object
= then intersect ray with that object

50

OpenGL Picking Hints

= gluUnproject
= transform window coordinates to object coordinates
given current projection and modelview matrices
= use to create ray into scene from cursor location

« call gluUnProject twice with same (x,y) mouse
location

= Z = near: (x,y,0)
« z =far: (x,y,1)

= Subtract near result from far result to get direction
vector for ray

= use this ray for line/polygon intersection

51

Picking and P4

= you must implement true 3D picking!

= you will not get credit if you just use 2D
iInformation

52

Collision Detection

53

Collision Detection

= do objects collide/intersect?
= static, dynamic
= simple case: picking as collision detection

= check if ray cast from cursor position collides
with any object in scene

= Simple shooting
= projectile arrives instantly, zero travel time
= better: projectile and target move over time
= see If collides with object during trajectory

54

Collision Detection Applications

determining if player hit wall/floor/obstacle
= terrain following (floor), maze games (walls)
= stop them walking through it
determining if projectile has hit target
determining if player has hit target
= punch/kick (desired), car crash (not desired)
detecting points at which behavior should change
= car in the air returning to the ground
cleaning up animation

= making sure a motion-captured character’s feet do not pass
through the floor

simulating motion
= physics, or cloth, or something else

55

From Simple to Complex

= boundary check
= perimeter of world vs. viewpoint or objects
= 2D/3D absolute coordinates for bounds
= Simple point in space for viewpoint/objects
= set of fixed barriers
« walls in maze game
« 2D/3D absolute coordinate system
= set of moveable objects
= one object against set of items
= Missile vs. several tanks
= multiple objects against each other
= punching game: arms and legs of players
= room of bouncing balls

56

Naive General Collision Detection

= for each object 7 containing polygons p
= test for intersection with object j containing
polygons q
= for polyhedral objects, test if object 7
penetrates surface of J

= test if vertices of i straddle polygon q of j

= if straddle, then test intersection of polygon g
with polygon p of object i

= very expensive! O(n?)

57

Choosing an Algorithm

= primary factor: geometry of colliding objects
= “object” could be a point, or line segment
= object could be specific shape: sphere, triangle, cube

= Objects can be concave/convex, solid/hollow,
deformable/rigid, manifold/non-manifold

= secondary factor: way in which objects move
= different algorithms for fast or slow moving objects

« different algorithms depending on how frequently the
object must be updated

= other factors: speed, simplicity, robustness

58

Robusthess

= for our purposes, collision detection code is robust if

« doesn't crash or infinite loop on any case that might
occur

« better if it doesn't fail on any case at all, even if the
case is supposed to be “impossible”

=« always gives some answer that is meaningful, or
explicitly reports that it cannot give an answer

= can handle many forms of geometry

= can detect problems with the input geometry,
particularly if that geometry is supposed to meet
some conditions (such as convexity)

= robustness is remarkably hard to obtain

59

Types of Geometry -
points

lines, rays and line segments .

spheres, cylinders and cones @p\
cubes, rectilinear boxes

= AABB: axis aligned bounding box

=« OBB: oriented bounding box, arbitrary alignment

k-dops — shapes bounded by planes at fixed orientations
convex meshes — any mesh can be triangulated

= concave meshes can be broken into convex chunks, by hand

triangle soup
more general curved surfaces, but often not used in games

60

Fundamental Design Principles

= several principles to consider when designing
collision detection strategy

= If more than one test available, with different
costs: how do you combine them?

= how do you avoid unnecessary tests?
= how do you make tests cheaper?

61

Fundamental Design Principles

fast simple tests first, eliminate many potential
collisions

» test bounding volumes before testing individual
triangles

exploit locality, eliminate many potential collisions

= use cell structures to avoid considering distant objects
use as much information as possible about geometry

= spheres have special properties that speed collision
testing

exploit coherence between successive tests

= things don’t typically change much between two
frames

62

Player-Wall Collisions

= first person games must prevent the player
from walking through walls and other
obstacles

= most general case: player and walls are
polygonal meshes

= each frame, player moves along path not
Known in advance

= assume piecewise linear: straight steps on
each frame

= assume player’s motion could be fast

63

Stupid Algorithm

= ONn each step, do a general mesh-to-mesh
intersection test to find out if the player
intersects the wall

= if they do, refuse to allow the player to move

= problems with this approach? how can we
improve:
= in speed?
= in accuracy?
= In response?

64

Ways to Improve

= even seemingly simple problem of
determining if the player hit the wall reveals a
wealth of techniques

= collision proxies

= spatial data structures to localize
= finding precise collision times

= responding to collisions

65

Collision Proxies

proxy: something that takes place of real object
=« cheaper than general mesh-mesh intersections
collision proxy (bounding volume) is piece of

geometry used to represent complex object for
purposes of finding collision

= If proxy collides, object is said to collide
= collision points mapped back onto original object

good proxy: cheap to compute collisions for, tight fit
to the real geometry

common proxies: sphere, cylinder, box, ellipsoid

= consider: fat player, thin player, rocket, car ...
66

Why Proxies Work

= proxies exploit facts about human perception

= we are extraordinarily bad at determining
correctness of collision between two complex
objects

= the more stuff is happening, and the faster it
happens, the more problems we have
detecting errors

= players frequently cannot see themselves

= we are bad at predicting what should happen
In response to a collision

67

Trade-off in Choosing Proxies

Sphere AABB OBB 6-dop Convex Hull

iIncreasing complexity & tightness of fit

decreasing cost of (overlap tests + proxy update)

68

Pair Reduction

want proxy for any moving object requiring collision
detection

before pair of objects tested in any detail, quickly
test if proxies intersect

when lots of moving objects, even this quick
bounding sphere test can take too long: N2 times if
there are N objects

reducing this N2 problem is called pair reduction
pair testing isn't a big issue until N>50 or so...

69

Spatial Data Structures

= can only hit something that is close

= spatial data structures tell you what is close
to object

= uniform grid, octrees, kd-trees, BSP trees,
OBB trees, k-dop trees

= for player-wall problem, typically use same
spatial data structure as for rendering

= BSP trees most common

70

Uniform Grids

71

Bounding Volume Hierarchies

72

Octrees

73

KD Trees

74

BSP Trees

75

OBB Trees

76

K-Dops

77

Testing BVH’s

TestBVH(A,B) {
if(not overlap(Agy, Bgy) return FALSE;
else if(isLeaf(A)) {
if(isLeaf(B)) {
for each triangle pair (T_,T,)
if(overlap(T,,T,)) AddIntersectionToList();
}
else {
for each child C, of B
TestBVH(A,C,);

}
}

else {
for each child C, of A
TestBVH(C_,B)

78

Optimization Structures

= all of these optimization structures can be
used in either 2D or 3D

= packing in memory may affect caching and
performance

79

Exploiting Coherence

= player normally doesn’t move far between
frames

= cells they intersected the last time are
= probably the same cells they intersect now
= Or at least they are close

= aim is to track which cells the player is in
without doing a full search each time

= easiest to exploit with a cell portal structure

80

Cell-Portal Collisions

= keep track which cell/s player is currently intersecting
= can have more than one if the player straddles a cell boundary
= always use a proxy (bounding volume) for tracking cells
» also keep track of which portals the player is straddling

= player can only enter new cell through portal

= On each frame

Intersect the player with the current cell walls and contents
(because they’re solid)

intersect the player with the portals

iIf the player intersects a portal, check that they are considered
“in” the neighbor cell

if the player no longer straddles a portal, they have just left a
cell

81

Precise Collision Times

= generally a player will go from not ®— #
intersecting to interpenetrating in the
course of a frame

= we typically would like the exact collision ‘4#
time and place
= response is generally better

« interpenetration may be algorithmically hard
{0 manage

= Interpenetration is difficult to quantify
= numerical root finding problem
= more than one way to do it:
=« hacked (but fast) clean up
= Interval halving (binary search) 82

Defining Penetration Depth

= more than one way to define

penetration depth

= distance to move back along
iIncoming path to avoid collision
« may be difficult to compute

= minimum distance to move in any
direction to avoid collision
« Often also difficult to compute

« distance in some particular
direction

= but what direction?
= “normal” to penetration surface

83

Hacked Clean Up

= Know time t, position x, such that
penetration occurs

= simply move position so that objects
just touch, leave time the same

= multiple choices for how to move:
= back along motion path
= shortest distance to avoid penetration
= some other option

84

Interval Halving

search through time for the point at which the objects collide
know when objects were not penetrating (last frame)
know when they are penetrating (this frame)
thus have upper and lower bound on collision time
= later than last frame, earlier than this frame
do a series of tests to bring bounds closer together

each test checks for collision at midpoint of current time
interval

=« If collision, midpoint becomes new upper bound
« If not, midpoint becomes new lower bound

keep going until the bounds are the same (or as accurate as
desired)

85

Interval Halving Example

t=0.5——|
t=0.75 —— |

t=0.5625 \‘ t=0.5——
— t=0.625 — |

86

Interval Halving Discussion

= advantages

= finds accurate collisions in time and space,
which may be essential

= ot too expensive
= disadvantages

= takes longer than hack (but note that time is
bounded, and you get to control it)

= may not work for fast moving objects and thin
obstacles

= method of choice for many applications

87

Temporal Sampling

= subtle point: collision detection is about the
algorithms for finding collisions in time as
much as space

= temporal sampling
= aliasing: can miss collision completely!

O—-O/O—@®

88

Managing Fast Moving Objects

= movement line
= test line segment representing motion of object center

= pros: works for large obstacles, cheap
= cons: may still miss collisions. how? H
= conservative prediction

= only move objects as far as you can be sure to catch collision

= largest conservative step is smallest distance divided by the
highest speed - clearly could be very small

= assume maximum velocity, smallest feature size
= Increase temporal and spatial sampling rate
= pros: will find all collisions
= CONs: may be expensive, how to pick step size
= simple alternative: just miss the hard cases
= player may not notice!

89

Collision Response

= frustrating to just stop

= for player motions, often best thing to do is
move player tangentially to obstacle

= do recursively to ensure all collisions caught
= find time and place of collision
= adjust velocity of player

= repeat with new velocity, start time, start
position (reduced time interval)

= handling multiple contacts at same time
= find a direction that is tangential to all contacts

90

Related Reading

= Real-Time Rendering
= Tomas Moller and Eric Haines
= on reserve in CICSR reading room

91

Acknowledgement

= slides borrow heavily from
= Stephen Chenney, (UWisc CS679)

s http://www.cs.wisc.edu/~schenney/courses/cs679-f2003/lectures/cs679-22.ppt

= slides borrow lightly from
= Steve Rotenberg, (UCSD CSE169)

= http://graphics.ucsd.edu/courses/cse169 w05/CSE169_17.ppt

92

