University of British Columbia
CPSC 314 Computer Graphics
May-June 2005

Tamara Munzner

Compositing, Clipping, Curves

Week 3, Thu May 26

http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005
News

- extra lab coverage: Mon 12-2, Wed 2-4
- P2 demo slot signup sheet
- handing back H1 today
- we’ll try to get H2 back tomorrow
 - we will put them in bin in lab, next to extra handouts
 - solutions will be posted
- you don’t have to tell us you’re using grace days
 - only if you’re turning it in late and you do *not* want to use up grace days
 - grace days are integer quantities
Homework 1 Common Mistakes

- Q4, Q5: too vague
 - don’t just say “rotate 90”, say around which axis, and in which direction (CCW vs CW)
 - be clear on whether actions are in old coordinate frame or new coordinate frame

- Q8: confusion on push/pop and complex operations
 - wrong: object drawn in wrong spot!
 - glPushMatrix();
 - glTranslate(..a..);
 - glRotate(..);
 - draw things
 - glPop();

 - correct: object drawn in right spot
 - glPushMatrix();
 - glTranslate(..-a..);
 - glRotate(..);
 - draw things
 - glPop();

 - both: nice modular function that doesn’t change modelview matrix
Schedule Change

- HW 3 out Thu 6/2, due Wed 6/8 4pm
Poll

- which do you prefer?
 - P4 due Fri, final Sat
 - final Thu in-class, P4 due Sat
Midterm Logistics

- **Tuesday 12-12:50**
 - sit spread out: every other row, at least three seats between you and next person
 - you can have one 8.5x11” handwritten one-sided sheet of paper
 - keep it, can write on other side too for final
 - calculators ok
Midterm Topics

- H1, P1, H2, P2
- first three lectures
- topics
 - Intro, Math Review, OpenGL
 - Transformations I/II/III
 - Viewing, Projections I/II
Reading: Today

- FCG Chapter 11
 - pp 209-214 only: clipping
- FCG Chap 13
- RB Chap Blending, Antialiasing, ...
 - only Section Blending
Reading: Next Time

- FCG Chapter 7
Errata

- p 214
 - $f(p) > 0$ is “outside” the plane

- p 234
 - For quadratic Bezier curves, $N=3$
 - $w_i^N(t) = (N-1)! / (i! (N-i-1)!)...$
Review: Illumination

- transport of energy from light sources to surfaces & points
 - includes direct and indirect illumination

Images by Henrik Wann Jensen
Review: Light Sources

- **directional/parallel lights**
 - point at infinity: \((x,y,z,0)^T\)

- **point lights**
 - finite position: \((x,y,z,1)^T\)

- **spotlights**
 - position, direction, angle

- **ambient lights**
Review: Light Source Placement

- geometry: positions and directions
 - standard: world coordinate system
 - effect: lights fixed wrt world geometry
 - alternative: camera coordinate system
 - effect: lights attached to camera (car headlights)
Review: Reflectance

- **specular**: perfect mirror with no scattering
- **gloss**: mixed, partial specularity
- **diffuse**: all directions with equal energy

\[
\text{specular} + \text{gloss} + \text{diffuse} = \text{reflectance distribution}
\]
Review: Reflection Equations

\[I_{\text{diffuse}} = k_d I_{\text{light}} (n \cdot l) \]

\[I_{\text{specular}} = k_s I_{\text{light}} (v \cdot r)^{n_{\text{shiny}}} \]

\[2 \left(N (N \cdot L) \right) - L = R \]
Blinn improvement

\[I_{\text{specular}} = k_s I_{\text{light}} (h \cdot n)^{n_{\text{shiny}}} \]

\[h = (l + v)/2 \]

full Phong lighting model

combine ambient, diffuse, specular components

\[I_{\text{total}} = k_s I_{\text{ambient}} + \sum_{i=1}^{\text{#lights}} I_i (k_d (n \cdot l_i) + k_s (v \cdot r_i)^{n_{\text{shiny}}}) \]

don’t forget to normalize all vectors: n,l,r,v,h
Review: Lighting

- lighting models
 - ambient
 - normals don’t matter
 - Lambert/diffuse
 - angle between surface normal and light
 - Phong/specular
 - surface normal, light, and viewpoint
Review: Shading Models

- flat shading
 - compute Phong lighting once for entire polygon
- Gouraud shading
 - compute Phong lighting at the vertices and interpolate lighting values across polygon
- Phong shading
 - compute averaged vertex normals
 - interpolate normals across polygon and perform Phong lighting across polygon
Correction/Review: Computing Normals

- per-vertex normals by interpolating per-facet normals
 - OpenGL supports both
- computing normal for a polygon
 - three points form two vectors
 - pick a point
 - vectors from
 - A: point to previous
 - B: point to next
 - AxB: normal of plane direction
 - normalize: make unit length
 - which side of plane is up?
 - counterclockwise point order convention
Review: Non-Photorealistic Shading

- cool-to-warm shading \(k_w = \frac{1+\mathbf{n} \cdot \mathbf{l}}{2}, c = k_w c_w + (1 - k_w) c_c \)
- draw silhouettes: if \((\mathbf{e} \cdot \mathbf{n}_0)(\mathbf{e} \cdot \mathbf{n}_1) \leq 0 \), \(\mathbf{e} = \) edge-eye vector
- draw creases: if \((\mathbf{n}_0 \cdot \mathbf{n}_1) \leq \text{threshold} \)

End of Class Last Time

- use version control for your projects!
 - CVS, RCS
- partially work through problem with lighting
Compositing
Compositing

- how might you combine multiple elements?
- foreground color A, background color B
Premultiplying Colors

- specify opacity with alpha channel: (r,g,b,α)
 - α=1: opaque, α=.5: translucent, α=0: transparent

- A over B
 - C = αA + (1-α)B

- but what if B is also partially transparent?
 - C = αA + (1-α)βB = βB + αA + βB - αβB
 - γ = β + (1-β)α = β + α - αβ
 - 3 multiplies, different equations for alpha vs. RGB

- premultiplying by alpha
 - C' = γC, B' = βB, A' = αA
 - C' = B' + A' - αB'
 - γ = β + α - αβ
 - 1 multiply to find C, same equations for alpha and RGB
Clipping
Rendering Pipeline

Geometry Database → Model/View Transform. → Lighting → Perspective Transform. → Clipping

↑ Scan Conversion → Texturing → Depth Test → Blending → Frame-buffer
Next Topic: Clipping

- we’ve been assuming that all primitives (lines, triangles, polygons) lie entirely within the *viewport*
- in general, this assumption will not hold:
Clipping

- analytically calculating the portions of primitives within the viewport
Why Clip?

- bad idea to rasterize outside of framebuffer bounds
- also, don’t waste time scan converting pixels outside window
 - could be billions of pixels for very close objects!
Line Clipping

- **2D**
 - determine portion of line inside an axis-aligned rectangle (screen or window)

- **3D**
 - determine portion of line inside axis-aligned parallelepiped (viewing frustum in NDC)
 - simple extension to 2D algorithms
Clipping

- naïve approach to clipping lines:
 for each line segment
 for each edge of viewport
 find intersection point
 pick “nearest” point
 if anything is left, draw it

- what do we mean by “nearest”?
- how can we optimize this?
Trivial Accepts

- big optimization: trivial accept/rejects
 - Q: how can we quickly determine whether a line segment is entirely inside the viewport?
 - A: test both endpoints
Trivial Rejects

Q: how can we know a line is outside viewport?
A: if both endpoints on wrong side of same edge, can trivially reject line
Clipping Lines To Viewport

- combining trivial accepts/rejects
 - trivially accept lines with both endpoints inside all edges of the viewport
 - trivially reject lines with both endpoints outside the same edge of the viewport
 - otherwise, reduce to trivial cases by splitting into two segments
Cohen-Sutherland Line Clipping

- **outcodes**
- 4 flags encoding position of a point relative to top, bottom, left, and right boundary

- \(OC(p1)=0010\)
- \(OC(p2)=0000\)
- \(OC(p3)=1001\)
Cohen-Sutherland Line Clipping

- assign outcode to each vertex of line to test
 - line segment: \((p_1,p_2)\)
- trivial cases
 - \(OC(p_1)==0 \land OC(p_2)==0\)
 - both points inside window, thus line segment completely visible (trivial accept)
 - \((OC(p_1) \land OC(p_2))!=0\)
 - there is (at least) one boundary for which both points are outside (same flag set in both outcodes)
 - thus line segment completely outside window (trivial reject)
Cohen-Sutherland Line Clipping

- if line cannot be trivially accepted or rejected, subdivide so that one or both segments can be discarded
- pick an edge that the line crosses (how?)
- intersect line with edge (how?)
- discard portion on wrong side of edge and assign outcode to new vertex
- apply trivial accept/reject tests; repeat if necessary
Cohen-Sutherland Line Clipping

- if line cannot be trivially accepted or rejected, subdivide so that one or both segments can be discarded
- pick an edge that the line crosses
 - check against edges in same order each time
 - for example: top, bottom, right, left
Cohen-Sutherland Line Clipping

- intersect line with edge (how?)
Cohen-Sutherland Line Clipping

- discard portion on wrong side of edge and assign outcode to new vertex

- apply trivial accept/reject tests and repeat if necessary
Viewport Intersection Code

- \((x_1, y_1), (x_2, y_2)\) intersect vertical edge at \(x_{\text{right}}\)
 - \(y_{\text{intersect}} = y_1 + m(x_{\text{right}} - x_1)\)
 - \(m = (y_2 - y_1)/(x_2 - x_1)\)

- \((x_1, y_1), (x_2, y_2)\) intersect horiz edge at \(y_{\text{bottom}}\)
 - \(x_{\text{intersect}} = x_1 + (y_{\text{bottom}} - y_1)/m\)
 - \(m = (y_2 - y_1)/(x_2 - x_1)\)
Cohen-Sutherland Discussion

- use opcodes to quickly eliminate/include lines
 - best algorithm when trivial accepts/rejects are common
- must compute viewport clipping of remaining lines
 - non-trivial clipping cost
 - redundant clipping of some lines
- more efficient algorithms exist
Line Clipping in 3D

- approach
 - clip against parallelepiped in NDC
 - after perspective transform
 - means that clipping volume always the same
 - xmin=ymin= -1, xmax=ymax= 1 in OpenGL

- boundary lines become boundary planes
 - but outcodes still work the same way
 - additional front and back clipping plane
 - zmin = -1, zmax = 1 in OpenGL
Polygon Clipping

- **objective**
 - 2D: clip polygon against rectangular window
 - or general convex polygons
 - extensions for non-convex or general polygons
 - 3D: clip polygon against parallelepiped
Polygon Clipping

- not just clipping all boundary lines
- may have to introduce new line segments
Why Is Clipping Hard?

- what happens to a triangle during clipping?
- possible outcomes:
 - triangle \Rightarrow triangle
 - triangle \Rightarrow quad
 - triangle \Rightarrow 5-gon

- how many sides can a clipped triangle have?
How Many Sides?

- seven...
Why Is Clipping Hard?

- a really tough case:
Why Is Clipping Hard?

- a really tough case:

concave polygon \Rightarrow multiple polygons
Polygon Clipping

- classes of polygons
 - triangles
 - convex
 - concave
 - holes and self-intersection
Sutherland-Hodgeman Clipping

- basic idea:
 - consider each edge of the viewport individually
 - clip the polygon against the edge equation
 - after doing all edges, the polygon is fully clipped
Sutherland-Hodgeman Clipping

- basic idea:
 - consider each edge of the viewport individually
 - clip the polygon against the edge equation
 - after doing all edges, the polygon is fully clipped
Sutherland-Hodgeman Clipping

- basic idea:
 - consider each edge of the viewport individually
 - clip the polygon against the edge equation
 - after doing all edges, the polygon is fully clipped
Sutherland-Hodgeman Clipping

- basic idea:
 - consider each edge of the viewport individually
 - clip the polygon against the edge equation
 - after doing all edges, the polygon is fully clipped
Sutherland-Hodgeman Clipping

- basic idea:
 - consider each edge of the viewport individually
 - clip the polygon against the edge equation
 - after doing all edges, the polygon is fully clipped
Sutherland-Hodgeman Clipping

- basic idea:
 - consider each edge of the viewport individually
 - clip the polygon against the edge equation
 - after doing all edges, the polygon is fully clipped
Sutherland-Hodgeman Clipping

- basic idea:
 - consider each edge of the viewport individually
 - clip the polygon against the edge equation
 - after doing all edges, the polygon is fully clipped
Sutherland-Hodgeman Clipping

- basic idea:
 - consider each edge of the viewport individually
 - clip the polygon against the edge equation
 - after doing all edges, the polygon is fully clipped
Sutherland-Hodgeman Clipping

- basic idea:
 - consider each edge of the viewport individually
 - clip the polygon against the edge equation
 - after doing all edges, the polygon is fully clipped
Sutherland-Hodgeman Algorithm

- input/output for algorithm
 - input: list of polygon vertices in order
 - output: list of clipped polygon vertices consisting of old vertices (maybe) and new vertices (maybe)

- basic routine
 - go around polygon one vertex at a time
 - decide what to do based on 4 possibilities
 - is vertex inside or outside?
 - is previous vertex inside or outside?
Clipping Against One Edge

- $p[i]$ inside: 2 cases

output: $p[i]$
Clipping Against One Edge

- $p[i]$ outside: 2 cases

\[\begin{align*}
\text{inside} & \quad \text{outside} \\
p[i-1] & \quad p[i] \\
& \quad \text{output: p} \\
p & \quad \text{output: nothing}
\end{align*}\]
Clipping Against One Edge

clipPolygonToEdge(p[n], edge) {
 for(i= 0 ; i< n ; i++) {
 if(p[i] inside edge) {
 if(p[i-1] inside edge) {
 output p[i]; // p[-1]= p[n-1]
 } else {
 p= intersect(p[i-1], p[i], edge); output p, p[i];
 }
 } else { // p[i] is outside edge
 if(p[i-1] inside edge) {
 p= intersect(p[i-1], p[i], edge); output p;
 }
 }
 }
}
Sutherland-Hodgeman Discussion

- similar to Cohen/Sutherland line clipping
 - inside/outside tests: outcodes
 - intersection of line segment with edge: window-edge coordinates
- clipping against individual edges independent
 - great for hardware (pipelining)
 - all vertices required in memory at same time
 - not so good, but unavoidable
 - another reason for using triangles only in hardware rendering
Sutherland/Hodgeman Discussion

- for rendering pipeline:
 - re-triangulate resulting polygon
 (can be done for every individual clipping edge)
Curves
Parametric Curves

- parametric form for a line:
 \[x = x_0 t + (1 - t) x_1 \]
 \[y = y_0 t + (1 - t) y_1 \]
 \[z = z_0 t + (1 - t) z_1 \]

- \(x, y \) and \(z \) are each given by an equation that involves:
 - parameter \(t \)
 - some user specified control points, \(x_0 \) and \(x_1 \)

- this is an example of a parametric curve
Splines

- **a spline** is a parametric curve defined by **control points**
 - term “spline” dates from engineering drawing, where a spline was a piece of flexible wood used to draw smooth curves
 - control points are *adjusted by the user* to control shape of curve
Splines - History

- draftsman used ‘ducks’ and strips of wood (splines) to draw curves
- wood splines have second-order continuity, pass through the control points

![ducks trace out curve](image)

![a duck (weight)](image)
Hermite Spline

- *hermite spline* is curve for which user provides:
 - endpoints of curve
 - parametric derivatives of curve at endpoints
 - parametric derivatives are dx/dt, dy/dt, dz/dt
 - more derivatives would be required for higher order curves
Hermite Cubic Splines

- example of knot and continuity constraints

Hermite Specification
Hermite Spline (2)

- say user provides x_0, x_1, x_0', x_1'
- cubic spline has degree 3, is of the form:
 $x = at^3 + bt^2 + ct + d$
 - for some constants a, b, c and d derived from the control points, but how?
- we have constraints:
 - curve must pass through x_0 when $t=0$
 - derivative must be x_0' when $t=0$
 - curve must pass through x_1 when $t=1$
 - derivative must be x_1' when $t=1$
Hermite Spline (3)

- solving for the unknowns gives

\[
\begin{align*}
 a &= -2x_1 + 2x_0 + x'_1 + x'_0 \\
 b &= 3x_1 - 3x_0 - x'_1 - 2x'_0 \\
 c &= x'_0 \\
 d &= x_0
\end{align*}
\]

- rearranging gives

\[
x = x_1(-2t^3 + 3t^2) \\
 + x_0(2t^3 - 3t^2 + 1) \\
 + x'_1(t^3 - t^2) \\
 + x'_0(t^3 - 2t^2 + t)
\]

\[
x = \begin{bmatrix} x_1 & x_0 & x'_1 & x'_0 \end{bmatrix} \begin{bmatrix} -2 & 3 & 0 & 0 \\ 2 & -3 & 0 & 1 \\ 1 & -1 & 0 & 0 \\ 1 & -2 & 1 & 0 \end{bmatrix} \begin{bmatrix} t^3 \\ t^2 \\ t \\ 1 \end{bmatrix}
\]
a point on a Hermite curve is obtained by multiplying each control point by some function and summing
functions are called basis functions
Sample Hermite Curves
Splines in 2D and 3D

- so far, defined only 1D splines:
 \[x = f(t; \mathbf{x}_0, \mathbf{x}_1, \mathbf{x}'_0, \mathbf{x}'_1) \]

- for higher dimensions, define control points in higher dimensions (that is, as vectors)

\[
\begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix} =
\begin{bmatrix}
 x_1 & x_0 & x'_1 & x'_0 \\
 y_1 & y_0 & y'_1 & y'_0 \\
 z_1 & z_0 & z'_1 & z'_0
\end{bmatrix}
\begin{bmatrix}
 -2 & 3 & 0 & 0 \\
 2 & -3 & 0 & 1 \\
 1 & -1 & 0 & 0 \\
 1 & -2 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
 t^3 \\
 t^2 \\
 t \\
 1
\end{bmatrix}
\]
Bézier Curves

- similar to Hermite, but more intuitive definition of endpoint derivatives
- four control points, two of which are knots
Bézier Curves

- derivative values of Bezier curve at knots dependent on adjacent points

\[\nabla p_1 = 3(p_2 - p_1) \]
\[\nabla p_4 = 3(p_4 - p_3) \]
can write Bezier in terms of Hermite

note: just matrix form of previous

\[
\begin{bmatrix}
 x_1 & y_1 \\
 x_2 & y_2 \\
 \frac{dx_1}{dt} & \frac{dy_1}{dt} \\
 \frac{dx_2}{dt} & \frac{dy_2}{dt}
\end{bmatrix}
= \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 \\
 -3 & 3 & 0 & 0 \\
 0 & 0 & -3 & 3
\end{bmatrix}
\begin{bmatrix}
 x_1 & y_1 \\
 x_2 & y_2 \\
 x_3 & y_3 \\
 x_4 & y_4
\end{bmatrix}
\]
Bézier vs. Hermite

Now substitute this in for previous Hermite
Bézier Basis, Geometry Matrices

\[
\begin{bmatrix}
 a_x & a_y \\
 b_x & b_y \\
 c_x & c_y \\
 d_x & d_y \\
\end{bmatrix}
= \begin{bmatrix}
 -1 & 3 & -3 & 1 \\
 3 & -6 & 3 & 0 \\
 -3 & 3 & 0 & 0 \\
 1 & 0 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
 x_1 & y_1 \\
 x_2 & y_2 \\
 x_3 & y_3 \\
 x_4 & y_4 \\
\end{bmatrix}
\]

\[\mathbf{M}_{\text{Bezier}} \cdot \mathbf{G}_{\text{Bezier}}\]

- but why is \(\mathbf{M}_{\text{Bezier}} \) a good basis matrix?
Bézier Blending Functions

- look at blending functions
- family of polynomials called order-3 Bernstein polynomials
 - \(C(3, k) t^k (1-t)^{3-k}; 0 \leq k \leq 3 \)
 - all positive in interval \([0,1]\)
 - sum is equal to 1

\[
p(t) = \begin{bmatrix}
(1-t)^3 \\
3t(1-t)^2 \\
3t^2(1-t) \\
t^3
\end{bmatrix}^T \begin{bmatrix}
p_1 \\
p_2 \\
p_3 \\
p_4
\end{bmatrix}
\]
Bézier Blending Functions

- every point on curve is linear combination of control points
- weights of combination are all positive
- sum of weights is 1
- therefore, curve is a convex combination of the control points
Bézier Curves

- curve will always remain within convex hull (bounding region) defined by control points
Bézier Curves

- interpolate between first, last control points
- 1st point’s tangent along line joining 1st, 2nd pts
- 4th point’s tangent along line joining 3rd, 4th pts
Comparing Hermite and Bézier

Hermite

Bézier
Comparing Hermite and Bezier

demo: www.siggraph.org/education/materials/HyperGraph/modeling/splines/demoprog/curve.html
Rendering Bezier Curves: Simple

- evaluate curve at fixed set of parameter values, join points with straight lines
- advantage: very simple
- disadvantages:
 - expensive to evaluate the curve at many points
 - no easy way of knowing how fine to sample points, and maybe sampling rate must be different along curve
 - no easy way to adapt: hard to measure deviation of line segment from exact curve
Rendering Beziers: Subdivision

- A cubic Bezier curve can be broken into two shorter cubic Bezier curves that exactly cover the original curve.
- Suggests a rendering algorithm:
 - Keep breaking curve into sub-curves.
 - Stop when control points of each sub-curve are nearly collinear.
 - Draw the control polygon: polygon formed by control points.
Sub-Dividing Bezier Curves

- step 1: find the midpoints of the lines joining the original control vertices. call them M_{01}, M_{12}, M_{23}
Sub-Dividing Bezier Curves

- step 2: find the midpoints of the lines joining M_{01}, M_{12} and M_{12}, M_{23}. call them M_{012}, M_{123}
Sub-Dividing Bezier Curves

- step 3: find the midpoint of the line joining M_{012}, M_{123}. call it M_{0123}
Sub-Dividing Bezier Curves

- curve $P_0, M_{01}, M_{012}, M_{0123}$ exactly follows original from $t=0$ to $t=0.5$
- curve $M_{0123}, M_{123}, M_{23}, P_3$ exactly follows original from $t=0.5$ to $t=1$
Sub-Dividing Bezier Curves

- continue process to create smooth curve
de Casteljau’s Algorithm

- can find the point on a Bezier curve for any parameter value t with similar algorithm
 - for $t=0.25$, instead of taking midpoints take points 0.25 of the way

demo: www.saltire.com/applets/advanced_geometry/spline/spline.htm
Longer Curves

- a single cubic Bezier or Hermite curve can only capture a small class of curves
 - at most 2 inflection points
- one solution is to raise the degree
 - allows more control, at the expense of more control points and higher degree polynomials
 - control is not local, one control point influences entire curve
- better solution is to join pieces of cubic curve together into piecewise cubic curves
 - total curve can be broken into pieces, each of which is cubic
 - local control: each control point only influences a limited part of the curve
 - interaction and design is much easier
Piecewise Bezier: Continuity Problems

demo: www.cs.princeton.edu/~min/cs426/jar/bezier.html
Continuity

- when two curves joined, typically want some degree of continuity across knot boundary
 - C0, “C-zero”, point-wise continuous, curves share same point where they join
 - C1, “C-one”, continuous derivatives
 - C2, “C-two”, continuous second derivatives
Geometric Continuity

- derivative continuity is important for animation
 - if object moves along curve with constant parametric speed, should be no sudden jump at knots
- for other applications, *tangent continuity* suffices
 - requires that the tangents point in the same direction
 - referred to as \(G^1 \) *geometric continuity*
 - curves could be made \(C^1 \) with a re-parameterization
 - geometric version of \(C^2 \) is \(G^2 \), based on curves having the same radius of curvature across the knot
Achieving Continuity

- Hermite curves
 - user specifies derivatives, so C^1 by sharing points and derivatives across knot

- Bezier curves
 - they interpolate endpoints, so C^0 by sharing control pts
 - introduce additional constraints to get C^1
 - parametric derivative is a constant multiple of vector joining first/last 2 control points
 - so C^1 achieved by setting $P_{0,3} = P_{1,0} = J$, and making $P_{0,2}$ and J and $P_{1,1}$ collinear, with $J-P_{0,2} = P_{1,1}-J$
 - C^2 comes from further constraints on $P_{0,1}$ and $P_{1,2}$

- leads to...
B-Spline Curve

- start with a sequence of control points
- select four from middle of sequence
 \((p_{i-2}, p_{i-1}, p_i, p_{i+1})\)
 - Bezier and Hermite goes between \(p_{i-2}\) and \(p_{i+1}\)
 - B-Spline doesn’t interpolate (touch) any of them but approximates the going through \(p_{i-1}\) and \(p_i\)
B-Spline

- by far the most popular spline used
- C_0, C_1, and C_2 continuous

demo: www.siggraph.org/education/materials/HyperGraph/modeling/splines/demoprog/curve.html
B-Spline

- locality of points

Figure 10-41
Local modification of a B-spline curve. Changing one of the control points in (a) produces curve (b), which is modified only in the neighborhood of the altered control point.
Project 3

- bumpy plane
 - vertex height varies randomly by 20% of face width
 - world coordinate light, camera coord light
 - regenerate terrain
 - toggle colors
- six triangles around a vertex
- [demo]
Project 3: Normals

- calculate once (per terrain)
 - per-face normals
 - then interpolate for per-vertex
- use when drawing
 - specify interleaved with vertices
- explicitly drawing normals
 - bristles at vertices
 - visual debugging
Project 3: Data Structures

- suggestion: 100x100x4 array for vertex coords
- colors?
- normals? per-face, per-vertex
Project 4

- create your own graphics game or tutorial
- required functionality
 - 3D, interactive, lighting/shading
 - texturing, picking, HUD
- advanced functionality pieces
 - two for 1-person team
 - four for 2-person team
 - six for 3-person team
P4: Advanced Functionality

- (new) navigation
- procedural modelling/textures
 - particle systems
- collision detection
- simulated dynamics
- level of detail control
- advanced rendering effects
- whatever else you want to do
 - proposal is a check with me
P4 Proposal

- due Wed 1 Jun 4pm
 - either electronic handin, or box handin for hardcopy
 - short (< 1 page) description
 - how game works
 - how it will fulfill required functionality
 - advanced functionality
 - must include at least one annotated screenshot mockup sketch
 - hand-drawn scanned or using computer tools
P4 Writeup

- **what**: a high level description of what you've created, including an explicit list of the advanced functionality items
- **how**: mid-level description of the algorithms and data structures that you've used
- **howto**: detailed instructions of the low-level mechanics of how to actually play (keyboard controls, etc)
- **sources**: sources of inspiration and ideas (especially any source code you looked at for inspiration on the Internet)
- include screen shots with handin for HOF eligibility
P4 Grading

- final project due 11:59pm Fri Jun 17
 - face to face demos again
 - I will be grading
- grading
 - 50% base: required functions, gameplay, etc
 - 50% advanced functionality
 - buckets, tentative mapping
 - zero = 0
 - minus = 40
 - check-minus = 60
 - check = 80
 - check-plus = 100
 - plus 105