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Week 3, Thu May 26

http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005

News
= extra lab coverage: Mon 12-2, Wed 2-4

= P2 demo slot signup sheet

handing back H1 today

= we'll try to get H2 back tomorrow
= we will put them in bin in lab, next to extra handouts
= solutions will be posted

= you don’t have to tell us you're using grace days
= only if you’re turning it in late and you do *not* want
to use up grace days
= grace days are integer quantities

Homework 1 Common Mistakes

= Q4, Q5: too vague

= don’t just say “rotate 90", say around which axis, and in which
direction (CCW vs CW)

= be clear on whether actions are in old coordinate frame or new
coordinate frame
= Q8: confusion on push/pop and complex operations
= wrong: object drawn in wrong spot! elPushMatrix(;
glTranslate(..a..);
glRotate(..);
draw things
lPop();
= correct: object drawn in right spot aAPUShMatrix(;
glTranslate(..a..);
. . glRotate(..);
= both: nice modular function St .y
that doesn’t change modelview matrix draw things
lPop();

Schedule Change
= HW 3 out Thu 6/2, due Wed 6/8 4pm

Poll

= which do you prefer?
= P4 due Fri, final Sat
= final Thu in-class, P4 due Sat

Midterm Logistics

= Tuesday 12-12:50

= Sit spread out: every other row, at least three
seats between you and next person

= you can have one 8.5x11” handwritten one-
sided sheet of paper
= keep it, can write on other side too for final
= calculators ok
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Midterm Topics

= H1, P1, H2, P2

= first three lectures

= topics
= Intro, Math Review, OpenGL
= Transformations I/11/11l
= Viewing, Projections I/1l

Reading: Today

= FCG Chapter 11
= pp 209-214 only: clipping

= FCG Chap 13

= RB Chap Blending, Antialiasing, ...
= only Section Blending

Reading: Next Time
= FCG Chapter 7

Errata
L) 214
= f(p) > 0 is “outside” the plane
L) 234

= For quadratic Bezier curves, N=3
= W_iAN(t) = (N-1) 1/ (il (N--1)1)....

Review: lllumination

= transport of energy from light sources to
surfaces & points
= includes direct and indirect illumination

Images by Henrik Wann Jensen

Review: Light Sources

= directional/parallel lights
= point at infinity: (x,y,z,0)T

= point lights ﬁ
= finite position: (x,y,z,1)7

= spotlights
= position, direction, angle

= ambient lights
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Review: Light Source Placement

= geometry: positions and directions
= standard: world coordinate system
= effect: lights fixed wrt world geometry
= alternative: camera coordinate system
= effect: lights attached to camera (car headlights)

Review: Reflectance

= specular. perfect mirror with no scattering
= gloss: mixed, partial specularity
= diffuse: all directions with equal energy

specular + glossy + diffuse =
reflectance distribution

Review: Reflection Equations

1 n
Liitfuse = Ka Ilight (mel) . ;

n,.
sh
= ksIIight (V ® r) R

specular

_ ﬁ@
! /I/ 3
‘ ol /7 2(N(N-L)-L=R

15

Review: Reflection Equations 2

= Blinn improvement e S hy 11
nshinf
Ispecular = ksIIight (h * n) ’ !

h=(1+v)/2

= full Phong lighting model
= combine ambient, diffuse, specular components

#lights

n,.
= shiny
Itotal _ksIambient + ZII (kd (n.li)+ks(v.ri) )
i=1
= don'’t forget to normalize all vectors: n,l,r,v,h "

Review: Lighting

= lighting models
= ambient
= normals don’t matter
= Lambert/diffuse
= angle between surface normal and light
= Phong/specular
= surface normal, light, and viewpoint

Review: Shading Models

= flat shading
= compute Phong lighting once for entire
polygon
= Gouraud shading

= compute Phong lighting at the vertices and
interpolate lighting values across polygon

= Phong shading
= compute averaged vertex normals
18

= interpolate normals across polygon and
perform Phong lighting across polygon
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Correction/Review: Computing Normals

= per-vertex normals by interpolating per-facet
normals

= OpenGL supports both
= computing normal for a polygon
= three points form two vectors
= pick a point
= vectors from
= A: point to previous

= B:point to next c-b
= AxB: normal of plane direction
= normalize: make unit length c a-b
= which side of plane is up?
= counterclockwise a

point order convention

Review: Non-Photorealistic Shading

= cool-to-warm shading &, =%

= draw silhouettes: if (e-n,)(e-n,) <0, e=edge-eye vector
= draw creases: if (n,-n,) <threshold

c=kye, + =k, e,

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing. html 20

End of Class Last Time

= use version control for your projects!
= CVS, RCS
= partially work through problem with lighting

Compositing

Compositing

= how might you combine multiple elements?
= foreground color A, background color B

A over B AinB AoutB AatopB AxorB

BITFEIIF  FIIAFIEI(  1IIEAFIIR  MIITEET  1EITFEIF
— wEan R N |

AandB }. 4 $2 4 $2 ¢ {0 84
¥ oel 98¢ 49( 1449 4} ool
2 2231 Praseaved b 130 L 28l I8 223
188873334 gidn 1o3IRFFII > »Z 34 P88 1

Partially }2¢ re4F2e oo rosFesdew: reer W ress
transparent : ¢ Seageti 3t 0 ol 9]

Aann (SR ISR 24 |
- 2 biaadabesl INEERYl idebaded! IoEERERIN

Conceptual }h
sub-pixel
overlay
= B

Premultiplying Colors

specify opacity with alpha channel: (r,g,b,c)
= o=1:0paque, a=.5: translucent, a=0: transparent

= AoverB
= C=0A+(1-0)B

= but what if B is also partially transparent?
« C=0A+(1-a) B = pB+ A+ BB - B
= y=Pp+(1-fla=p+a-oap
= 3 multiplies, different equations for alpha vs. RGB

= premultiplying by alpha
= C'=yC,B’=pB,A’=0A
= C=B"+A"-0B’

< y=B+a-of
= 1 multiply to find C, same equations for alpha and RGB
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Clipping

Rendering Pipeline

Geometr Model/View B Perspective _
Dahbasey = Transform. [~ Lighting |~ Tra,.p:fo,-m_ rt Clipping 5:‘”

Scan
Conversion

Depth _ Frame-
Test Blending buffer

1

|— Texturing |—

Next Topic: Clipping

= we've been assuming that all primitives (lines,
triangles, polygons) lie entirely within the viewport

= in general, this assumption will not hold:

S

Clipping

= analytically calculating the portions of
primitives within the viewport

/v/
™~

Why Clip?

= bad idea to rasterize outside of framebuffer
bounds

= also, don’t waste time scan converting pixels
outside window

= could be billions of pixels for very close
objects!

Line Clipping

= 2D

= determine portion of line inside an axis-aligned
rectangle (screen or window)

= 3D

= determine portion of line inside axis-aligned
parallelpiped (viewing frustum in NDC)

= simple extension to 2D algorithms
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Clipping

= naive approach to clipping lines:
for each line segment
for each edge of viewport
find intersection point
pick “nearest” point
if anything is left, draw it

p ” _»B
= what do we mean by “nearest”? /D
= how can we optimize this? ~Ic
A

Trivial Accepts

= big optimization: trivial accept/rejects
= Q: how can we quickly determine whether a line
segment is entirely inside the viewport?

= A: test both endpoints

N

Trivial Rejects

= Q: how can we know a line is outside
viewport?

= A: if both endpoints on wrong side of same
edge, can trivially reject line

N

Clipping Lines To Viewport

= combining trivial accepts/rejects

trivially accept lines with both endpoints inside all edges
of the viewport

trivially lines with both endpoints

otherwise, reduce to trivial cases by splitting into two

segments

AN

Cohen-Sutherland Line Clipping

= outcodes
= 4 flags encoding position of a point relative to
top, bottom, left, and right boundary
1010 1000 1001
« OC(p1)=0010 S YV
= OC(p2)=0000 *pl
. OCp3)=1001 0010 0000 0001

Y=Ymin
0110 0100 0101

Cohen-Sutherland Line Clipping

= assign outcode to each vertex of line to test
= line segment: (p1,p2)
= trivial cases
= OC(p1)== 0 && OC(p2)==0
= both points inside window, thus line segment completely
visible (trivial accept)
= (OC(pl) & OC(p2))!=0
= there is (at least) one boundary for which both points are
outside (same flag set in both outcodes)

= thus line segment completely outside window (trivial
reject)
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Cohen-Sutherland Line Clipping

if line cannot be trivially accepted or rejected,
subdivide so that one or both segments can be
discarded

pick an edge that the line crosses ( )

intersect line with edge ( )

discard portion on wrong side of edge and assign
outcode to new vertex

apply trivial accept/reject tests; repeat if necessary

Cohen-Sutherland Line Clipping

= if line cannot be trivially accepted or rejected,
subdivide so that one or both segments can be
discarded
= pick an edge that the line crosses
= check against edges in same order each time
= for example: top, bottom, right, left

A/

Cohen-Sutherland Line Clipping

= intersect line with edge (how?)

Cohen-Sutherland Line Clipping

= discard portion on wrong side of edge and assign
outcode to new vertex

D

c~

A/

= apply trivial accept/reject tests and repeat if
necessary

Viewport Intersection Code

= (X4, Y1), (Xo, yo) intersect vertical edge at X;;gy
* Yintersect = Y1 + m(xright - Xy)
= M=(Y5-Y1)/(Xa-X1)
(%21 Y2)
(X4, ¥4) Xright
= (X4, ¥q), (Xo, ¥o) intersect horiz edge at yyoiom

= Xintersect = X1 + (Ybottom — ¥1)/M
= M=(yo-Y1)/(Xo-Xy) (X2, ¥o)

41

Cohen-Sutherland Discussion

= use opcodes to quickly eliminate/include lines

= best algorithm when trivial accepts/rejects are
common

= must compute viewport clipping of remaining
lines
= non-trivial clipping cost
= redundant clipping of some lines
= more efficient algorithms exist

42
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Line Clipping in 3D

= approach
= clip against parallelpiped in NDC
= after perspective transform
= means that clipping volume always the same
= Xmin=ymin= -1, xmax=ymax= 1 in OpenGL

= boundary lines become boundary planes
= but outcodes still work the same way
= additional front and back clipping plane
= zmin = -1, zmax = 1 in OpenGL

43

Polygon Clipping

= Objective
= 2D: clip polygon against rectangular window

= or general convex polygons

= extensions for non-convex or general polygons
= 3D: clip polygon against parallelpiped

Polygon Clipping

= not just clipping all boundary lines
= may have to introduce new line segments

NN

45

Why Is Clipping Hard?

= what happens to a triangle during clipping?
= possible outcomes

[
triangle = triangle triangle = quad triangle = 5-gon

= how many sides can a clipped triangle have?

How Many Sides?

= seven...

47

Why Is Clipping Hard?

= a really tough case:
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Why Is Clipping Hard?

= a really tough case:

concave polygon = multiple polygons

49

Sutherland-Hodgeman Clipping

= basic idea:
= consider each edge of the viewport individually
= clip the polygon against the edge equation
= after doing all edges, the polygon is fully clipped

2]
/
~7

Polygon Clipping

= classes of polygons

= triangles

= convex

= concave

= holes and self-intersection

Sutherland-Hodgeman Clipping

= basic idea:
= consider each edge of the viewport individually
= clip the polygon against the edge equation
= after doing all edges, the polygon is fully clipped

/

4
~7

Sutherland-Hodgeman Clipping

= basic idea:
= consider each edge of the viewport individually
= clip the polygon against the edge equation
= after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping

= basic idea:
= consider each edge of the viewport individually
= clip the polygon against the edge equation
= after doing all edges, the polygon is fully clipped
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Sutherland-Hodgeman Clipping

= basic idea:
= consider each edge of the viewport individually
= clip the polygon against the edge equation
= after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping

= basic idea:
= consider each edge of the viewport individually
= clip the polygon against the edge equation
= after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping

= basic idea:
= consider each edge of the viewport individually
= clip the polygon against the edge equation
= after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping

= basic idea:
= consider each edge of the viewport individually
= clip the polygon against the edge equation
= after doing all edges, the polygon is fully clipped

ﬁ

Sutherland-Hodgeman Clipping

= basic idea:
= consider each edge of the viewport individually
= clip the polygon against the edge equation
= after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Algorithm

= input/output for algorithm
= input: list of polygon vertices in order
= output: list of clipped poygon vertices
consisting of old vertices (maybe) and new
vertices (maybe)
= basic routine
= go around polygon one vertex at a time
= decide what to do based on 4 possibilities
= is vertex inside or outside?
= is previous vertex inside or outside?

Page 10
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Clipping Against One Edge

= pli] inside: 2 cases
inside outside inside | outside
pli-1]

.‘/np/p.[i-l]

pli]

pli]

output: p[i] output: p, plil 6

Clipping Against One Edge

= p[i] outside: 2 cases

inside outside inside | outside
pli-1] plil

pli]

pli-1]

output: p output: nothing 6

Clipping Against One Edge
clipPolygonToEdge( p[n], edge ) {
for(i=0;i<n;i++){
if( p[i] inside edge ) {
if( p[i-1] inside edge ) output p[i];  // p[-1]= p[n-1]
else {
p= intersect( p[i-1], pli], edge ); output p, plil;
}
} else { /1 pli] is outside edge
if( p[i-1] inside edge ) {
p= intersect(p[i-1], p[l], edge ); output p;
}

Sutherland-Hodgeman Example

inside outside

7
P p4
—~ L

pl

Sutherland-Hodgeman Discussion

= similar to Cohen/Sutherland line clipping
= inside/outside tests: outcodes

= intersection of line segment with edge:
window-edge coordinates

= clipping against individual edges independent
= great for hardware (pipelining)
= all vertices required in memory at same time
= not so good, but unavoidable

= another reason for using triangles only in
hardware rendering

65

Sutherland/Hodgeman Discussion

= for rendering pipeline:
= re-triangulate resulting polygon
(can be done for every individual clipping
edge)

A
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Curves

67

Parametric Curves

= parametric form for a line:
x=xt+({1-1)x
y=yt +(d=0y
2=zt +(1-1)z
= X, y and z are each given by an equation that
involves:
= parameter ¢
= some user specified control points, x, and x;
= this is an example of a parametric curve

Splines

= a spline is a parametric curve defined by
control points
= term “spline” dates from engineering drawing,
where a spline was a piece of flexible wood
used to draw smooth curves
= control points are adjusted by the userto
control shape of curve

69

Splines - History

= draftsman used ‘ducks’ and
strips of wood (splines) to
draw curves

= wood splines have second-
order continuity, pass
through the control points

————

B O |

a duck (weight)

ducks trace out curve

Hermite Spline

= hermite spline is curve for which user
provides:
= endpoints of curve
= parametric derivatives of curve at endpoints
= parametric derivatives are dx/dt, dy/dt, dz/dt

= more derivatives would be required for higher
order curves

Hermite Cubic Splines

= example of knot and continuity constraints

Vp, sz/
/ t=1
=0 P2

Hermite Specification

Page 12
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Hermite Spline (2)

= say user provides x,,x,,x;,x/
= cubic spline has degree 3, is of the form:
x=at’ +bt* +ct+d
= for some constants a, b, ¢ and d derived from the
control points, but how?
= we have constraints:
= curve must pass through x, when t=0
= derivative must be x’, when t=0
= curve must pass through x, when t=1
= derivative must be x’; when t=1

Hermite Spline (3)

= solving for the unknowns gives

a==2x+2x,+ X/ +x;
b=3x,—3x,— x| —2x,
,

c=Xx,

d=x,

= rearranging gives
3
x=x,(-20+34) _22 2 g (1) ’2
+x,(2t —’31’+I) or x=ly x ¥ x t
+X/(F =) 1 -1 0 0f¢
+x(8 =217 +1) 1 -2 1 0]1

Basis Functions

= a point on a Hermite curve is obtained by
multiplying each control point by some function and
summing

= functions are called basis functions

Sample Hermite Curves

/\V\Jm
sz//
A

Splines in 2D and 3D

= so far, defined only 1D splines:
X=Ff(t:Xp, X1, X 0, X';)

= for higher dimensions, define control points in
higher dimensions (that is, as vectors)

, -2 3 0 0o]#
X XX xl’ X, > 30 1|
YI=In Y y: y? 10 0|
SR R S B

Bézier Curves

= similar to Hermite, but more intuitive
definition of endpoint derivatives

= four control points, two of which are knots

P
Vp, Vp: / support”
/ =1 - “chord” P,
=1

=0 P2 [
Bézier

Hermite Specification Specification P

Page 13
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Bézier Curves Bézier vs. Hermite

o ] = can write Bezier in terms of Hermite
= derivative values of Bezier curve at knots « note: just matrix form of previous

dependent on adjacent points _ _
X0 L0 0 0fx »

Vp, =3(p, -
p=3p,-p) Y 00 0 1|x
Vp4 = 3(]74 - p3) =

& dy
i -3 3 0 0 X3 Vs
% %) Lo 0 =3 3]k y]
— —_—
GH@rmxt@ GBezxzr
79 80
Bézier vs. Hermite Bézier Basis, Geometry Matrices

= Now substitute this in for previous Hermite
a, a] [-1 3 =3 1]x
bo b |3 -6 3
a, a2 -2 1 11 o o o] x» o, ¢ | |-3 3 o
d, d, 1 0 0
Mo

= but why is Mg, @ good basis matrix?

< <
= =
I W
= ~
w w

<

e
IS
=
N

e -7 the J4d
M giemmite G pert
81 82
Bézier Blending Functions Bézier Blending Functions

= look at blending functions

every point on curve is

-0 [p i inati I ) )
= family of polynomials called ' linear (I:onjbmatlon of Begier Blending /
order-3 Bernstein polynomials 3= | p, control points w unctions
= C(3, k) th (1-1)3%; 0<= k<=3 P(1)= = weights of combination
’ ’ 2 . 08|
= all positive in interval [0,1] 3A-0)] | s are all positive N
. sum is equal to 1 . » = sum of weights is 1 .
! = therefore, curve is a
Convex Combination Of 01 o1 02 03 04 05 06 07 08 03 ix
the control points '
83 84
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Bézier Curves

= curve will always remain within convex hull
(bounding region) defined by control points

@ ©

85

Bézier Curves
= interpolate between first, last control points

= 18t point’s tangent along line joining 1st, 2nd pts
= 4™ point's tangent along line joining 39, 4th pts

@

Comparing Hermite and Bézier

Hermite Bézier
~ - i ! p—
< el oo \ o
// _ SN —xo| o4 — 83
” 02 \><
0 ,,/// T~
SN TN A ~ ;
t" } \ l/ \ —~ / \\\‘ _f\/"
] N \ / \ B ey
h: '\ //“ . » P "t
{ D Vi
S S Z// / AR
7 L NN
T

87

Comparing Hermite and Bezier

demo: www.siggraph.org/education/materials/HyperGraph/modeling/splines/demoprog/curve. html

12
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Rendering Bezier Curves: Simple

= evaluate curve at fixed set of parameter
values, join points with straight lines
= advantage: very simple
= disadvantages:
= expensive to evaluate the curve at many
points
= no easy way of knowing how fine to sample °
points, and maybe sampling rate must be
different along curve

= NO easy way to adapt: hard to measure
deviation of line segment from exact curve

89

Rendering Beziers: Subdivision

= a cubic Bezier curve can be broken into two
shorter cubic Bezier curves that exactly cover
original curve

= suggests a rendering algorithm:
= keep breaking curve into sub-curves

= stop when control points of each sub-curve
are nearly collinear

= draw the control polygon: polygon formed by
control points

90
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Sub-Dividing Bezier Curves

= step 1: find the midpoints of the lines joining
the olr\ijqinal control vertices. call them M,,,
M12! 23

MlZ

91

Sub-Dividing Bezier Curves

= step 2: find the midpoints of the lines joining
My;, M,,and M,,, M, call them My, M, 5

92

Sub-Dividing Bezier Curves

= step 3: find the midpoint of the line joining
Mo12: My call it Mz

93

Sub-Dividing Bezier Curves

= curve Py, My;, My,,, M), exactly follows original
from =0 to t=0.5

= curve My o3, Myp3, My, P;exactly follows
original from =0.5 to t=1

94

Sub-Dividing Bezier Curves

= continue process to create smooth curve

95

de Casteljau’s Algorithm

= can find the point on a Bezier curve for any
parameter value t with similar algorithm
« for t=0.25, instead of taking midpoints take points
0.25 of the way

MlZ

P,

demo: www.saltire.com/applets/advanced_geometry/spline/spline.htm 9%
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Longer Curves

= asingle cubic Bezier or Hermite curve can only capture a
small class of curves
= at most 2 inflection points
= one solution is to raise the degree

= allows more control, at the expense of more control points and
higher degree polynomials

= control is not local, one control point influences entire curve

= better solution is to join pieces of cubic curve together into
piecewise cubic curves

= total curve can be broken into pieces, each of which is cubic

= local control: each control point only influences a limited part of
the curve

= interaction and design is much easier

97

Piecewise Bezier: Continuity Problems

demo: www.cs.princeton.edu/~min/cs426/jar/bezier.html

98

Continuity

= when two curves joined, typically want some
degree of continuity across knot boundary
= CO0, “C-zero”, point-wise continuous, curves
share same point where they join
= C1, “C-one”, continuous derivatives
= C2, “C-two”, continuous second derivatives
Co & Cy conljnuity

C, continuity Co & Cy & C; continuity

N
~_/

vy

Geometric Continuity

= derivative continuity is important for animation

=« if object moves along curve with constant parametric
speed, should be no sudden jump at knots

= for other applications, tangent continuity suffices
= requires that the tangents point in the same direction
= referred to as G’ geometric continuity
= curves could be made C’ with a re-parameterization

= geometric version of C?is G?, based on curves
having the same radius of curvature across the knot

100

Achieving Continuity

= Hermite curves
= user specifies derivatives, so C’ by sharing points and
derivatives across knot
= Bezier curves
= they interpolate endpoints, so C? by sharing control pts
= introduce additional constraints to get C’
= parametric derivative is a constant multiple of vector joining
first/last 2 control points
= 50 C’ achieved by setting P, ;=P ,=J, and making P,, and J and
P, ; collinear, with J-Py =P, ;-J
= (2 comes from further constraints on P, ; and P, ,

= leads to...

101

B-Spline Curve

= start with a sequence of control points
= select four from middle of sequence
(P2 Pi-ts Pis Pist)
= Bezier and Hermite goes between p,, and p;,,

= B-Spline doesn't interpolate (touch) any of them but
approximates the going through p,, and p;

P o 0P2 o P
N

P ° °
P, * ? P, P
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B-Spline B-Spline

= by far the most popular spline used

= |ocality of points
= C,, C,, and C, continuous

Figure 10-41
Local modification of a B-spline curve. Changing one of the control points in (a) produces

demo: www.siggraph.org/education/materials/HyperGraph/modeling/splines/demoprog/curve. html curve (b), which is modified only in the neighborhood of the altered control point

103

R, of

Project 3 Project 3: Normals
= bum lane = calculate once (per terrain
Py p
= vertex height varies randomly by 20% of face = per-face normals
width = then interpolate for per-vertex
= world coordinate light, camera coord light = use when drawing
= regenerate terrain ) = specify interleaved with vertices
= toggle colors 3 f = explicitly drawing normals
= six triangles around a vertex « bristles at vertices
= [demo] 4 S| @ = visual debugging
105 106
Project 3: Data Structures Project 4
= suggestion: 100x100x4 array for vertex = create your own graphics game or tutorial
coords = required functionality
= colors?

= 3D, interactive, lighting/shading
= texturing, picking, HUD
= advanced functionality pieces
= two for 1-person team
= four for 2-person team
= six for 3-person eam

= normals? per-face, per-vertex

107 108
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P4: Advanced Functionality

= (new) navigation

= procedural modelling/textures
= particle systems

= collision detection

= simulated dynamics

= level of detail control

= advanced rendering effects

= whatever else you want to do
= proposal is a check with me

109

P4 Proposal

= due Wed 1 Jun 4pm
= either electronic handin, or box handin for
hardcopy
= short (< 1 page) description
= how game works
= how it will fulfill required functionality
= advanced functionality

= must include at least one annotated
screenshot mockup sketch

= hand-drawn scanned or using computer tools

110

P4 Writeup

= what: a high level description of what you've
created, including an explicit list of the advanced
functionality items

= how: mid-level description of the algorithms and
data structures that you've used

= howto: detailed instructions of the low-level
mechanics of how to actually play (keyboard
controls, etc)

= sources: sources of inspiration and ideas
(especially any source code you looked at for
inspiration on the Internet)

= include screen shots with handin for HOF eligibility

111

P4 Grading

= final project due 11:59pm Fri Jun 17
= face to face demos again
= | will be grading
= grading
= 50% base: required functions, gameplay, etc
= 50% advanced functionality
= buckets, tentative mapping
= zero=0
= minus = 40
= check-minus = 60
= check = 80
= check-plus = 100
= plus 105

112
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