
1

Page 1

University of British Columbia
CPSC 314 Computer Graphics

May-June 2005

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005

Compositing, Clipping, Curves

Week 3, Thu May 26

�

News
� extra lab coverage: Mon 12-2, Wed 2-4

� P2 demo slot signup sheet
� handing back H1 today
� we’ll try to get H2 back tomorrow

� we will put them in bin in lab, next to extra handouts
� solutions will be posted

� you don’t have to tell us you’re using grace days
� only if you’re turning it in late and you do *not* want

to use up grace days
� grace days are integer quantities

�

Homework 1 Common Mistakes
� Q4, Q5: too vague

� don’t just say “rotate 90”, say around which axis, and in which
direction (CCW vs CW)

� be clear on whether actions are in old coordinate frame or new
coordinate frame

� Q8: confusion on push/pop and complex operations
� wrong: object drawn in wrong spot!

� correct: object drawn in right spot

� both: nice modular function
that doesn’t change modelview matrix

glPushMatrix();
glTranslate(..a..);
glRotate(..);
draw things

glPop();

glPushMatrix();
glTranslate(..a..);
glRotate(..);
glTranslate(..-a..);
draw things

glPop(); �

Schedule Change

� HW 3 out Thu 6/2, due Wed 6/8 4pm

�

Poll

� which do you prefer?
� P4 due Fri, final Sat
� final Thu in-class, P4 due Sat

�

Midterm Logistics

� Tuesday 12-12:50
� sit spread out: every other row, at least three

seats between you and next person
� you can have one 8.5x11” handwritten one-

sided sheet of paper
� keep it, can write on other side too for final

� calculators ok

2

Page 2

�

Midterm Topics

� H1, P1, H2, P2
� first three lectures
� topics

� Intro, Math Review, OpenGL
� Transformations I/II/III
� Viewing, Projections I/II

�

Reading: Today

� FCG Chapter 11
� pp 209-214 only: clipping

� FCG Chap 13
� RB Chap Blending, Antialiasing, ...

� only Section Blending

�

Reading: Next Time

� FCG Chapter 7

	

Errata

� p 214
� f(p) > 0 is “outside” the plane

� p 234
� For quadratic Bezier curves, N=3
� w_i^N(t) = (N-1)! / (i! (N-i-1)!)...

		

Review: Illumination

� transport of energy from light sources to
surfaces & points
� includes direct and indirect illumination

Images by Henrik Wann Jensen
	�

Review: Light Sources

� directional/parallel lights
� point at infinity: (x,y,z,0)T

� point lights
� finite position: (x,y,z,1)T

� spotlights
� position, direction, angle

� ambient lights

3

Page 3

	�

Review: Light Source Placement

� geometry: positions and directions
� standard: world coordinate system

� effect: lights fixed wrt world geometry

� alternative: camera coordinate system
� effect: lights attached to camera (car headlights)

	�

Review: Reflectance

� specular: perfect mirror with no scattering
� gloss: mixed, partial specularity
� diffuse: all directions with equal energy

+ + =

specular + glossy + diffuse =
reflectance distribution

	�

Review: Reflection Equations

Idiffuse = kd Ilight (n • l)
nl

θ

2 (N (N · L)) – L = R

Ispecular = k sIlight (v • r)
nshiny

	�

Review: Reflection Equations 2

� Blinn improvement

� full Phong lighting model
� combine ambient, diffuse, specular components

� don’t forget to normalize all vectors: n,l,r,v,h

ll

nn
vvhh

Itotal = k sIambient + Ii (
i=1

lights

� kd (n• li) + k s(v •ri)
nshiny)

Ispecular = k sIlight (h• n)
nshiny

h = (l + v) /2

	�

Review: Lighting

� lighting models
� ambient

� normals don’t matter

� Lambert/diffuse
� angle between surface normal and light

� Phong/specular
� surface normal, light, and viewpoint

	�

Review: Shading Models

� flat shading
� compute Phong lighting once for entire

polygon
� Gouraud shading

� compute Phong lighting at the vertices and
interpolate lighting values across polygon

� Phong shading
� compute averaged vertex normals
� interpolate normals across polygon and

perform Phong lighting across polygon

4

Page 4

	�

Correction/Review: Computing Normals
� per-vertex normals by interpolating per-facet

normals
� OpenGL supports both

� computing normal for a polygon
� three points form two vectors

� pick a point
� vectors from

� A: point to previous
� B: point to next

� AxB: normal of plane direction
� normalize: make unit length

� which side of plane is up?
� counterclockwise

point order convention

c

b

a

c-b

a-b

(a-b) x (c-b)

�

Review: Non-Photorealistic Shading
� cool-to-warm shading
� draw silhouettes: if , e=edge-eye vector
� draw creases: if

(e ⋅ n0)(e ⋅ n1) ≤ 0

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html

(n0 ⋅ n1) ≤ threshold

kw = 1+ n ⋅ l
2

,c = kwcw + (1− kw)cc

�	

End of Class Last Time

� use version control for your projects!
� CVS, RCS

� partially work through problem with lighting

��

Compositing

��

Compositing

� how might you combine multiple elements?
� foreground color A, background color B

��

Premultiplying Colors
� specify opacity with alpha channel: (r,g,b,α)

� α=1: opaque, α=.5: translucent, α=0: transparent

� A over B
� C = αA + (1-α)B

� but what if B is also partially transparent?
� C = αA + (1-α) βB = βB + αA + βB - α βB
� γ = β + (1-β)α = β + α – αβ

� 3 multiplies, different equations for alpha vs. RGB

� premultiplying by alpha
� C’ = γ C, B’ = βB, A’ = αA

� C’ = B’ + A’ - αB’
� γ = β + α – αβ

� 1 multiply to find C, same equations for alpha and RGB

5

Page 5

��

Clipping

��

Rendering Pipeline

Geometry
Database
GeometryGeometry
DatabaseDatabase

Model/View
Transform.
Model/ViewModel/View
Transform.Transform. LightingLightingLighting Perspective

Transform.
PerspectivePerspective
Transform.Transform. ClippingClippingClipping

Scan
Conversion

ScanScan
ConversionConversion

Depth
Test

DepthDepth
TestTestTexturingTexturingTexturing BlendingBlendingBlending

Frame-
buffer

FrameFrame--
bufferbuffer

��

Next Topic: Clipping

� we’ve been assuming that all primitives (lines,
triangles, polygons) lie entirely within the viewport
� in general, this assumption will not hold:

��

Clipping

� analytically calculating the portions of
primitives within the viewport

��

Why Clip?

� bad idea to rasterize outside of framebuffer
bounds

� also, don’t waste time scan converting pixels
outside window
� could be billions of pixels for very close

objects!

�

Line Clipping

� 2D
� determine portion of line inside an axis-aligned

rectangle (screen or window)
� 3D
� determine portion of line inside axis-aligned

parallelpiped (viewing frustum in NDC)
� simple extension to 2D algorithms

6

Page 6

�	

Clipping

� naïve approach to clipping lines:
for each line segment

for each edge of viewport
find intersection point
pick “nearest” point

if anything is left, draw it

� what do we mean by “nearest”?
� how can we optimize this?

A

B

C
D

��

Trivial Accepts

� big optimization: trivial accept/rejects
� Q: how can we quickly determine whether a line

segment is entirely inside the viewport?

� A: test both endpoints

��

Trivial Rejects

� Q: how can we know a line is outside
viewport?

� A: if both endpoints on wrong side of same
edge, can trivially reject line

��

Clipping Lines To Viewport

� combining trivial accepts/rejects
� trivially accept lines with both endpoints inside all edges

of the viewport
� trivially reject lines with both endpoints outside the same

edge of the viewport
� otherwise, reduce to trivial cases by splitting into two

segments

��

Cohen-Sutherland Line Clipping

� outcodes
� 4 flags encoding position of a point relative to

top, bottom, left, and right boundary

� OC(p1)=0010
� OC(p2)=0000
� OC(p3)=1001

x=x=xxminmin x=x=xxmaxmax

y=y=yyminmin

y=y=yymaxmax

00000000

10101010 10001000 10011001

00100010 00010001

01100110 01000100 01010101

p1p1

p2p2

p3p3

��

Cohen-Sutherland Line Clipping

� assign outcode to each vertex of line to test
� line segment: (p1,p2)

� trivial cases
� OC(p1)== 0 && OC(p2)==0

� both points inside window, thus line segment completely
visible (trivial accept)

� (OC(p1) & OC(p2))!= 0
� there is (at least) one boundary for which both points are

outside (same flag set in both outcodes)
� thus line segment completely outside window (trivial

reject)

7

Page 7

��

Cohen-Sutherland Line Clipping

� if line cannot be trivially accepted or rejected,
subdivide so that one or both segments can be
discarded

� pick an edge that the line crosses (how?)
� intersect line with edge (how?)
� discard portion on wrong side of edge and assign

outcode to new vertex
� apply trivial accept/reject tests; repeat if necessary

��

Cohen-Sutherland Line Clipping

� if line cannot be trivially accepted or rejected,
subdivide so that one or both segments can be
discarded

� pick an edge that the line crosses
� check against edges in same order each time

� for example: top, bottom, right, left

A

B

D E

C

��

Cohen-Sutherland Line Clipping

� intersect line with edge (how?)

A

B

D E

C

�

� discard portion on wrong side of edge and assign
outcode to new vertex

� apply trivial accept/reject tests and repeat if
necessary

Cohen-Sutherland Line Clipping

A

B

D
C

�	

Viewport Intersection Code

� (x1, y1), (x2, y2) intersect vertical edge at xright
� yintersect = y1 + m(xright – x1)
� m=(y2-y1)/(x2-x1)

� (x1, y1), (x2, y2) intersect horiz edge at ybottom
� xintersect = x1 + (ybottom – y1)/m
� m=(y2-y1)/(x2-x1)

(x2, y2)
(x1, y1) xright

(x2, y2)

(x1, y1)
ybottom

��

Cohen-Sutherland Discussion

� use opcodes to quickly eliminate/include lines
� best algorithm when trivial accepts/rejects are

common

� must compute viewport clipping of remaining
lines
� non-trivial clipping cost
� redundant clipping of some lines

� more efficient algorithms exist

8

Page 8

��

Line Clipping in 3D

� approach
� clip against parallelpiped in NDC

� after perspective transform

� means that clipping volume always the same
� xmin=ymin= -1, xmax=ymax= 1 in OpenGL

� boundary lines become boundary planes
� but outcodes still work the same way
� additional front and back clipping plane

� zmin = -1, zmax = 1 in OpenGL
��

Polygon Clipping

� objective
� 2D: clip polygon against rectangular window

� or general convex polygons
� extensions for non-convex or general polygons

� 3D: clip polygon against parallelpiped

��

Polygon Clipping

� not just clipping all boundary lines
� may have to introduce new line segments

��

� what happens to a triangle during clipping?
� possible outcomes:

triangle � triangle

Why Is Clipping Hard?

triangle � quad triangle � 5-gon

� how many sides can a clipped triangle have?

��

How Many Sides?

� seven…

��

� a really tough case:

Why Is Clipping Hard?

9

Page 9

��

� a really tough case:

Why Is Clipping Hard?

concave polygon � multiple polygons

�

Polygon Clipping

� classes of polygons
� triangles
� convex
� concave
� holes and self-intersection

�	

Sutherland-Hodgeman Clipping

� basic idea:
� consider each edge of the viewport individually
� clip the polygon against the edge equation
� after doing all edges, the polygon is fully clipped

��

Sutherland-Hodgeman Clipping

� basic idea:
� consider each edge of the viewport individually
� clip the polygon against the edge equation
� after doing all edges, the polygon is fully clipped

��

Sutherland-Hodgeman Clipping

� basic idea:
� consider each edge of the viewport individually
� clip the polygon against the edge equation
� after doing all edges, the polygon is fully clipped

��

Sutherland-Hodgeman Clipping

� basic idea:
� consider each edge of the viewport individually
� clip the polygon against the edge equation
� after doing all edges, the polygon is fully clipped

10

Page 10

��

Sutherland-Hodgeman Clipping

� basic idea:
� consider each edge of the viewport individually
� clip the polygon against the edge equation
� after doing all edges, the polygon is fully clipped

��

Sutherland-Hodgeman Clipping

� basic idea:
� consider each edge of the viewport individually
� clip the polygon against the edge equation
� after doing all edges, the polygon is fully clipped

��

Sutherland-Hodgeman Clipping

� basic idea:
� consider each edge of the viewport individually
� clip the polygon against the edge equation
� after doing all edges, the polygon is fully clipped

��

Sutherland-Hodgeman Clipping

� basic idea:
� consider each edge of the viewport individually
� clip the polygon against the edge equation
� after doing all edges, the polygon is fully clipped

��

Sutherland-Hodgeman Clipping

� basic idea:
� consider each edge of the viewport individually
� clip the polygon against the edge equation
� after doing all edges, the polygon is fully clipped

�

Sutherland-Hodgeman Algorithm

� input/output for algorithm
� input: list of polygon vertices in order
� output: list of clipped poygon vertices

consisting of old vertices (maybe) and new
vertices (maybe)

� basic routine
� go around polygon one vertex at a time
� decide what to do based on 4 possibilities

� is vertex inside or outside?
� is previous vertex inside or outside?

11

Page 11

�	

Clipping Against One Edge

� p[i] inside: 2 cases

outsideoutsideinsideinside insideinside outsideoutside

p[i]p[i]

p[ip[i--1]1]

output: output: p[i]p[i]

p[i]p[i]

p[ip[i--1]1]pp

output: output: p,p, p[i]p[i]
��

Clipping Against One Edge

� p[i] outside: 2 cases

p[i]p[i]

p[ip[i--1]1]

output: output: pp

p[i]p[i]

p[ip[i--1]1]

pp

output: nothingoutput: nothing

outsideoutsideinsideinside insideinside outsideoutside

��

Clipping Against One Edge
clipPolygonToEdge(p[n], edge) {

for(i= 0 ; i< n ; i++) {
if(p[i] inside edge) {

if(p[i-1] inside edge) output p[i]; // p[-1]= p[n-1]
else {

p= intersect(p[i-1], p[i], edge); output p, p[i];
}

} else { // p[i] is outside edge
if(p[i-1] inside edge) {

p= intersect(p[i-1], p[I], edge); output p;
}

}
} ��

Sutherland-Hodgeman Example

insideinside outsideoutside

p0p0

p1p1

p2p2

p3p3 p4p4

p5p5
p7p7 p6p6

��

Sutherland-Hodgeman Discussion

� similar to Cohen/Sutherland line clipping
� inside/outside tests: outcodes
� intersection of line segment with edge:

window-edge coordinates
� clipping against individual edges independent

� great for hardware (pipelining)
� all vertices required in memory at same time

� not so good, but unavoidable
� another reason for using triangles only in

hardware rendering

��

Sutherland/Hodgeman Discussion

� for rendering pipeline:
� re-triangulate resulting polygon

(can be done for every individual clipping
edge)

12

Page 12

��

Curves

��

Parametric Curves

� parametric form for a line:

� x, y and z are each given by an equation that
involves:
� parameter t
� some user specified control points, x0 and x1

� this is an example of a parametric curve

10

10

10

)1(

)1(

)1(

zttzz

yttyy

xttxx

−+=
−+=
−+=

��

Splines

� a spline is a parametric curve defined by
control points
� term “spline” dates from engineering drawing,

where a spline was a piece of flexible wood
used to draw smooth curves

� control points are adjusted by the user to
control shape of curve

�

Splines - History

� draftsman used ‘ducks’ and
strips of wood (splines) to
draw curves

� wood splines have second-
order continuity, pass
through the control points a duck (weight)

ducks trace out curve

�	

Hermite Spline

� hermite spline is curve for which user
provides:
� endpoints of curve
� parametric derivatives of curve at endpoints

� parametric derivatives are dx/dt, dy/dt, dz/dt

� more derivatives would be required for higher
order curves

��

Hermite Cubic Splines

� example of knot and continuity constraints

13

Page 13

��

Hermite Spline (2)

� say user provides
� cubic spline has degree 3, is of the form:

� for some constants a, b, c and d derived from the
control points, but how?

� we have constraints:
� curve must pass through x0 when t=0
� derivative must be x’0 when t=0
� curve must pass through x1 when t=1
� derivative must be x’1 when t=1

dctbtatx +++= 23

1010 ,,, xxxx ′′

��

Hermite Spline (3)

� solving for the unknowns gives

� rearranging gives
0

0

0101

0101

233
22

xd
xc

xxxxb
xxxxa

=
′=

′−′−−=
′+′++−=

)2(
)(x

)132(
)32(

23
0

23
1

23
0

23
1

tttx
tt

ttx
ttxx

+−′+
−′+

+−+
+−=

[]
�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

−
−
−

−

′′=

10121

0011

1032
0032

2

3

0101 t

t

t

xxxxxor

��

Basis Functions

� a point on a Hermite curve is obtained by
multiplying each control point by some function and
summing

� functions are called basis functions

- 0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x1
x0
x'1
x'0

��

Sample Hermite Curves

��

Splines in 2D and 3D

� so far, defined only 1D splines:
x=f(t:x0,x1,x’0,x’1)

� for higher dimensions, define control points in
higher dimensions (that is, as vectors)

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

−
−
−

−

�
�
�

�

�

�
�
�

�

�

′′
′′
′′

=
�
�
�

�

�

�
�
�

�

�

10121
0011
1032
0032

2

3

0101

0101

0101

t

t

t

zzzz

yyyy

xxxx

z

y

x

��

Bézier Curves

� similar to Hermite, but more intuitive
definition of endpoint derivatives

� four control points, two of which are knots

14

Page 14

��

Bézier Curves

� derivative values of Bezier curve at knots
dependent on adjacent points

�

Bézier vs. Hermite

� can write Bezier in terms of Hermite
� note: just matrix form of previous

equations

�	

Bézier vs. Hermite

� Now substitute this in for previous Hermite

��

Bézier Basis, Geometry Matrices

� but why is MBezier a good basis matrix?

��

Bézier Blending Functions

� look at blending functions

� family of polynomials called
order-3 Bernstein polynomials
� C(3, k) tk (1-t)3-k; 0<= k <= 3
� all positive in interval [0,1]
� sum is equal to 1

��

Bézier Blending Functions

� every point on curve is
linear combination of
control points

� weights of combination
are all positive

� sum of weights is 1
� therefore, curve is a

convex combination of
the control points

15

Page 15

��

Bézier Curves

� curve will always remain within convex hull
(bounding region) defined by control points

��

Bézier Curves
� interpolate between first, last control points
� 1st point’s tangent along line joining 1st, 2nd pts
� 4th point’s tangent along line joining 3rd, 4th pts

��

Comparing Hermite and Bézier

0

0.2

0.4

0.6

0.8

1

1.2

B0
B1
B2
B3

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x1
x0
x'1
x'0

BézierHermite

��

Comparing Hermite and Bezier

0

0.2

0.4

0.6

0.8

1

1.2

B0
B1
B2
B3

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x1
x0
x'1
x'0

demo: www.siggraph.org/education/materials/HyperGraph/modeling/splines/demoprog/curve.html

��

Rendering Bezier Curves: Simple

� evaluate curve at fixed set of parameter
values, join points with straight lines

� advantage: very simple
� disadvantages:

� expensive to evaluate the curve at many
points

� no easy way of knowing how fine to sample
points, and maybe sampling rate must be
different along curve

� no easy way to adapt: hard to measure
deviation of line segment from exact curve

�

Rendering Beziers: Subdivision

� a cubic Bezier curve can be broken into two
shorter cubic Bezier curves that exactly cover
original curve

� suggests a rendering algorithm:
� keep breaking curve into sub-curves
� stop when control points of each sub-curve

are nearly collinear
� draw the control polygon: polygon formed by

control points

16

Page 16

�	

Sub-Dividing Bezier Curves

� step 1: find the midpoints of the lines joining
the original control vertices. call them M01,
M12, M23

P0

P1 P2

P3

M01

M12

M23

��

Sub-Dividing Bezier Curves

� step 2: find the midpoints of the lines joining
M01, M12 and M12, M23. call them M012, M123

P0

P1 P2

P3

M01

M12

M23

M012 M123

��

Sub-Dividing Bezier Curves

� step 3: find the midpoint of the line joining
M012, M123. call it M0123

P0

P1 P2

P3

M01

M12

M23

M012 M123
M0123

��

Sub-Dividing Bezier Curves

� curve P0, M01, M012, M0123 exactly follows original
from t=0 to t=0.5
� curve M0123 , M123 , M23, P3 exactly follows
original from t=0.5 to t=1

P0

P1 P2

P3

M01

M12

M23

M012 M123
M0123

��

Sub-Dividing Bezier Curves

P0

P1 P2

P3

� continue process to create smooth curve

��

de Casteljau’s Algorithm

� can find the point on a Bezier curve for any
parameter value t with similar algorithm
� for t=0.25, instead of taking midpoints take points

0.25 of the way

P0

P1
P2

P3

M01

M12

M23

t=0.25

demo: www.saltire.com/applets/advanced_geometry/spline/spline.htm

17

Page 17

��

Longer Curves
� a single cubic Bezier or Hermite curve can only capture a

small class of curves
� at most 2 inflection points

� one solution is to raise the degree
� allows more control, at the expense of more control points and

higher degree polynomials
� control is not local, one control point influences entire curve

� better solution is to join pieces of cubic curve together into
piecewise cubic curves
� total curve can be broken into pieces, each of which is cubic
� local control: each control point only influences a limited part of

the curve
� interaction and design is much easier

��

Piecewise Bezier: Continuity Problems

demo: www.cs.princeton.edu/~min/cs426/jar/bezier.html

��

Continuity

� when two curves joined, typically want some
degree of continuity across knot boundary
� C0, “C-zero”, point-wise continuous, curves

share same point where they join
� C1, “C-one”, continuous derivatives
� C2, “C-two”, continuous second derivatives

	

Geometric Continuity

� derivative continuity is important for animation
� if object moves along curve with constant parametric

speed, should be no sudden jump at knots
� for other applications, tangent continuity suffices

� requires that the tangents point in the same direction
� referred to as G1 geometric continuity
� curves could be made C1 with a re-parameterization
� geometric version of C2 is G2, based on curves

having the same radius of curvature across the knot

	
	

Achieving Continuity

� Hermite curves
� user specifies derivatives, so C1 by sharing points and

derivatives across knot
� Bezier curves

� they interpolate endpoints, so C0 by sharing control pts
� introduce additional constraints to get C1

� parametric derivative is a constant multiple of vector joining
first/last 2 control points

� so C1 achieved by setting P0,3=P1,0=J, and making P0,2 and J and
P1,1 collinear, with J-P0,2=P1,1-J

� C2 comes from further constraints on P0,1 and P1,2

� leads to...

	
�

B-Spline Curve

� start with a sequence of control points
� select four from middle of sequence

(pi-2, pi-1, pi, pi+1)

� Bezier and Hermite goes between pi-2 and pi+1

� B-Spline doesn’t interpolate (touch) any of them but
approximates the going through pi-1 and pi

P0

P1

P3

P2

P4 P5

P6

18

Page 18

	
�

B-Spline

� by far the most popular spline used
� C0, C1, and C2 continuous

demo: www.siggraph.org/education/materials/HyperGraph/modeling/splines/demoprog/curve.html

	
�

B-Spline

� locality of points

	
�

Project 3

� bumpy plane
� vertex height varies randomly by 20% of face

width
� world coordinate light, camera coord light
� regenerate terrain
� toggle colors

� six triangles around a vertex
� [demo]

3
2

1

6
5

4

	
�

Project 3: Normals

� calculate once (per terrain)
� per-face normals
� then interpolate for per-vertex

� use when drawing
� specify interleaved with vertices

� explicitly drawing normals
� bristles at vertices
� visual debugging

	
�

Project 3: Data Structures

� suggestion: 100x100x4 array for vertex
coords

� colors?
� normals? per-face, per-vertex

	
�

Project 4

� create your own graphics game or tutorial
� required functionality

� 3D, interactive, lighting/shading
� texturing, picking, HUD

� advanced functionality pieces
� two for 1-person team
� four for 2-person team
� six for 3-person eam

19

Page 19

	
�

P4: Advanced Functionality

� (new) navigation
� procedural modelling/textures

� particle systems
� collision detection
� simulated dynamics
� level of detail control
� advanced rendering effects
� whatever else you want to do

� proposal is a check with me

		

P4 Proposal

� due Wed 1 Jun 4pm
� either electronic handin, or box handin for

hardcopy
� short (< 1 page) description

� how game works
� how it will fulfill required functionality
� advanced functionality

� must include at least one annotated
screenshot mockup sketch
� hand-drawn scanned or using computer tools

			

P4 Writeup

� what: a high level description of what you've
created, including an explicit list of the advanced
functionality items

� how: mid-level description of the algorithms and
data structures that you've used

� howto: detailed instructions of the low-level
mechanics of how to actually play (keyboard
controls, etc)

� sources: sources of inspiration and ideas
(especially any source code you looked at for
inspiration on the Internet)

� include screen shots with handin for HOF eligibility

		�

P4 Grading
� final project due 11:59pm Fri Jun 17

� face to face demos again
� I will be grading

� grading
� 50% base: required functions, gameplay, etc
� 50% advanced functionality
� buckets, tentative mapping

� zero = 0
� minus = 40
� check-minus = 60
� check = 80
� check-plus = 100
� plus 105

