University of British Columbia
CPSC 314 Computer Graphics
May-June 2005
Tamara Munzner
Compositing, Clipping, Curves
Week 3, Thu May 26
http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005

Homework 1 Common Mistakes

- Q4, Q5: too vague
- don't just say "rotate 90 ", say around which axis, and in which direction (CCW vs CW)
- be clear on whether actions are in old coordinate frame or new coordinate frame
- Q8: confusion on push/pop and complex operations
- wrong: object drawn in wrong spot!

wrong: object drawn in wrong spot!	gIPushMatrix(); glTranslate(..a..); glRotate(..); draw things glPop();
- correct: object drawn in right spot - both: nice modular function that doesn't change modelview matrix	glPushMatrix(); glTranslate(..a..); glRotate(..); glTranslate(..-a..); draw things glPop();

Schedule Change

- HW 3 out Thu 6/2, due Wed 6/8 4pm

Poll

- which do you prefer?
- P4 due Fri, final Sat
- final Thu in-class, P4 due Sat

News

- extra lab coverage: Mon 12-2, Wed 2-4
- P2 demo slot signup sheet
- handing back H 1 today
- we'll try to get H2 back tomorrow
- we will put them in bin in lab, next to extra handouts
- solutions will be posted
- you don't have to tell us you're using grace days
- only if you're turning it in late and you do *not* want to use up grace days
- grace days are integer quantities

Midterm Topics

- H1, P1, H2, P2
- first three lectures
- topics
- Intro, Math Review, OpenGL
- Transformations I/II/III
- Viewing, Projections I/II

Reading: Today

- FCG Chapter 11
- pp 209-214 only: clipping
- FCG Chap 13
- RB Chap Blending, Antialiasing, ...
- only Section Blending

Reading: Next Time

Errata

- p 214
- $f(p)>0$ is "outside" the plane
- p 234
- For quadratic Bezier curves, $\mathrm{N}=3$
- w_i^N(t) = (N-1)! / (i! (N-i-1)!)...

Review: Light Sources

- directional/parallel lights
- point at infinity: $(x, y, z, 0)^{\top}$
- point lights
- finite position: $(x, y, z, 1)^{\top}$

- spotlights
- position, direction, angle
- ambient lights

Review: Light Source Placement

- geometry: positions and directions
- standard: world coordinate system
- effect: lights fixed wrt world geometry
- alternative: camera coordinate system
- effect: lights attached to camera (car headlights)

Review: Reflectance

- specular. perfect mirror with no scattering
- gloss: mixed, partial specularity
- diffuse: all directions with equal energy

specular + glossy + diffuse = reflectance distribution

Review: Reflection Equations 2

$\mathbf{h}=(\mathbf{l}+\mathbf{v}) / 2$

- full Phong lighting model
- combine ambient, diffuse, specular components
$\mathbf{I}_{\text {total }}=\mathbf{k}_{\mathbf{s}} \mathbf{I}_{\text {ambient }}+\sum_{i=1}^{\# \text { lights }} \mathbf{I}_{\mathbf{i}}\left(\mathbf{k}_{\mathbf{d}}\left(\mathbf{n} \bullet \mathbf{l}_{\mathbf{i}}\right)+\mathbf{k}_{\mathbf{s}}\left(\mathbf{v} \bullet \mathbf{r}_{\mathbf{i}}\right)^{n_{\text {shiny }}}\right)$
- don't forget to normalize all vectors: $\mathrm{n}, \mathrm{l}, \mathrm{r}, \mathrm{v}, \mathrm{h}$

Review: Lighting

- lighting models
ambient
- normals don't matter
- Lambert/diffuse
- angle between surface normal and light
- Phong/specular
- surface normal, light, and viewpoint

Review: Shading Models

- flat shading
- compute Phong lighting once for entire polygon
- Gouraud shading
- compute Phong lighting at the vertices and interpolate lighting values across polygon
- Phong shading
- compute averaged vertex normals
- interpolate normals across polygon and perform Phong lighting across polygon

Correction/Review: Computing Normals

- per-vertex normals by interpolating per-facet normals
- OpenGL supports both
- computing normal for a polygon
- three points form two vectors
- pick a point
- vectors from
- A: point to previous
- B: point to next
- AxB: normal of plane direction - normalize: make unit length
- which side of plane is up?
- counterclockwise point order convention

Review: Non-Photorealistic Shading

- cool-to-warm shading $k_{w}=\frac{1+\mathbf{n} \cdot \mathbf{l}}{2}, c=k_{w} c_{w}+\left(1-k_{w}\right) c_{c}$
- draw silhouettes: if $\left(\mathbf{e} \cdot \mathbf{n}_{0}\right)\left(\mathbf{e} \cdot \mathbf{n}_{1}\right) \leq 0, \mathbf{e}=$ edge-eye vector
- draw creases: if $\left(\mathbf{n}_{0} \cdot \mathbf{n}_{1}\right) \leq$ threshold

End of Class Last Time

- use version control for your projects!
- CVS, RCS
- partially work through problem with lighting

Premultiplying Colors

- specify opacity with alpha channel: (r,g,b, α)
- $\alpha=1$: opaque, $\alpha=.5$: translucent, $\alpha=0$: transparent
- A over B
- $\mathbf{C}=\alpha \mathbf{A}+(1-\alpha) \mathbf{B}$
- but what if \mathbf{B} is also partially transparent?
- $\mathbf{C}=\alpha \mathbf{A}+(1-\alpha) \beta \mathbf{B}=\beta \mathbf{B}+\alpha \mathbf{A}+\beta \mathbf{B}-\alpha \beta \mathbf{B}$
- $\gamma=\beta+(1-\beta) \alpha=\beta+\alpha-\alpha \beta$
- 3 multiplies, different equations for alpha vs. RGB
- premultiplying by alpha
- $\mathbf{C}^{\prime}=\gamma \mathbf{C}, \mathbf{B}^{\prime}=\beta \mathbf{B}, \mathbf{A}^{\prime}=\alpha \mathbf{A}$
- $\mathbf{C}^{\prime}=\mathbf{B}^{\prime}+\mathbf{A}^{\prime}-\alpha \mathbf{B}^{\prime}$
- $\gamma=\beta+\alpha-\alpha \beta$
- 1 multiply to find C, same equations for alpha and RGB

Next Topic: Clipping

- we've been assuming that all primitives (lines, triangles, polygons) lie entirely within the viewport

Clipping

- analytically calculating the portions of primitives within the viewport
- in general, this assumption will not hold:

Why Clip?

- bad idea to rasterize outside of framebuffer bounds
- also, don't waste time scan converting pixels outside window
- could be billions of pixels for very close objects!

Line Clipping

- 2D
- determine portion of line inside an axis-aligned rectangle (screen or window)
- 3D
- determine portion of line inside axis-aligned parallelpiped (viewing frustum in NDC)
- simple extension to 2D algorithms

Clipping

- naïve approach to clipping lines:
for each line segment
for each edge of viewport find intersection point pick "nearest" point if anything is left, draw it
- what do we mean by "nearest"?
- how can we optimize this?

Trivial Rejects

- Q: how can we know a line is outside viewport?
- A: if both endpoints on wrong side of same edge, can trivially reject line

Cohen-Sutherland Line Clipping

- outcodes
- 4 flags encoding position of a point relative to top, bottom, left, and right boundary

Trivial Accepts

- big optimization: trivial accept/rejects
- Q: how can we quickly determine whether a line segment is entirely inside the viewport?
- A: test both endpoints

Clipping Lines To Viewport

- combining trivial accepts/rejects
- trivially accept lines with both endpoints inside all edges of the viewport
- trivially reject lines with both endpoints outside the same edge of the viewport
- otherwise, reduce to trivial cases by splitting into two segments

Cohen-Sutherland Line Clipping

- assign outcode to each vertex of line to test
- line segment: ($\mathbf{p 1 , p 2 \text {) }}$
- trivial cases
- $O C(\mathbf{p} 1)==0$ \&\& OC(p2)==0
- both points inside window, thus line segment completely visible (trivial accept)
- ($\mathrm{OC}(\mathbf{p} 1) \& \mathrm{OC}(\mathbf{p} \mathbf{2}))!=0$
- there is (at least) one boundary for which both points are outside (same flag set in both outcodes)
- thus line segment completely outside window (trivial reject)

Cohen-Sutherland Line Clipping

- if line cannot be trivially accepted or rejected, subdivide so that one or both segments can be discarded
- pick an edge that the line crosses (how?)
- intersect line with edge (how?)
- discard portion on wrong side of edge and assign outcode to new vertex
- apply trivial accept/reject tests; repeat if necessary

Cohen-Sutherland Line Clipping

- if line cannot be trivially accepted or rejected, subdivide so that one or both segments can be discarded
- pick an edge that the line crosses
- check against edges in same order each time
- for example: top, bottom, right, left

Cohen-Sutherland Line Clipping

Cohen-Sutherland Line Clipping

- intersect line with edge (how?)

- discard portion on wrong side of edge and assign outcode to new vertex

- apply trivial accept/reject tests and repeat if necessary

Viewport Intersection Code

- $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ intersect vertical edge at $x_{\text {right }}$
- $y_{\text {intersect }}=y_{1}+m\left(x_{\text {right }}-x_{1}\right)$
- $m=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)$

- $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ intersect horiz edge at $y_{\text {bottom }}$
- xintersect $=x_{1}+\left(y_{\text {bottom }}-y_{1}\right) / m$
- $m=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)$

Cohen-Sutherland Discussion

- use opcodes to quickly eliminate/include lines - best algorithm when trivial accepts/rejects are common
- must compute viewport clipping of remaining lines
- non-trivial clipping cost
- redundant clipping of some lines
- more efficient algorithms exist

Line Clipping in 3D

- approach
- clip against parallelpiped in NDC
- after perspective transform
- means that clipping volume always the same
- xmin=ymin= $-1, x m a x=y m a x=1$ in OpenGL
- boundary lines become boundary planes
- but outcodes still work the same way
- additional front and back clipping plane $-\mathrm{zmin}=-1, \mathrm{zmax}=1$ in OpenGL

Polygon Clipping

- objective
- 2D: clip polygon against rectangular window
- or general convex polygons
- extensions for non-convex or general polygons
- 3D: clip polygon against parallelpiped

Why Is Clipping Hard?

- what happens to a triangle during clipping?
- possible outcomes:

- how many sides can a clipped triangle have?

Why Is Clipping Hard?

- a really tough case:

Why Is Clipping Hard?

- a really tough case:

concave polygon \Rightarrow multiple polygons

Sutherland-Hodgeman Clipping

- basic idea:
- consider each edge of the viewport individually
- clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

Polygon Clipping

- classes of polygons
- triangles
- convex
- concave
- holes and self-intersection

Sutherland-Hodgeman Clipping

- basic idea:
- consider each edge of the viewport individually
- clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping

- basic idea:
- consider each edge of the viewport individually

Sutherland-Hodgeman Clipping

- basic idea:
- consider each edge of the viewport individually
clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping

- basic idea:
- consider each edge of the viewport individually
- clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping

- basic idea:
- consider each edge of the viewport individually
- clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping

- basic idea:
- consider each edge of the viewport individually
- clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping

- basic idea:
- consider each edge of the viewport individually
- clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping

- basic idea:
- consider each edge of the viewport individually
- clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Algorithm

- input/output for algorithm
- input: list of polygon vertices in order
- output: list of clipped poygon vertices consisting of old vertices (maybe) and new vertices (maybe)
- basic routine
- go around polygon one vertex at a time
- decide what to do based on 4 possibilities
- is vertex inside or outside?
- is previous vertex inside or outside?

Clipping Against One Edge

- p[i] outside: 2 cases


```
    Clipping Against One Edge
    clipPolygonToEdge(p[n], edge ) {
    for(i= 0;i< n;i++ ){
        if( p[i] inside edge ) {
                if(p[i-1] inside edge ) output p[i]; // p[-1]= p[n-1]
                else {
                p= intersect( p[i-1], p[i], edge ); output p, p[i];
            }
            } else { // p[i] is outside edge
            if( p[i-1] inside edge ) {
                p= intersect(p[i-1], p[l], edge ); output p;
            }
    }
}

\section*{Sutherland-Hodgeman Example}


\section*{Sutherland-Hodgeman Discussion}
- similar to Cohen/Sutherland line clipping
- inside/outside tests: outcodes
- intersection of line segment with edge:
window-edge coordinates
- clipping against individual edges independent - great for hardware (pipelining)
- all vertices required in memory at same time
- not so good, but unavoidable
- another reason for using triangles only in hardware rendering

\section*{Sutherland/Hodgeman Discussion}
- for rendering pipeline:
- re-triangulate resulting polygon (can be done for every individual clipping edge)

\begin{tabular}{|c|}
\hline \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\end{tabular}

\section*{Parametric Curves}
- parametric form for a line:
\[
\begin{aligned}
& x=x_{0} t+(1-t) x_{1} \\
& y=y_{0} t+(1-t) y_{1} \\
& z=z_{0} t+(1-t) z_{1}
\end{aligned}
\]
- \(x, y\) and \(z\) are each given by an equation that involves:
- parameter \(t\)
- some user specified control points, \(x_{0}\) and \(x_{1}\)
- this is an example of a parametric curve

\section*{Splines}
- a spline is a parametric curve defined by control points
- term "spline" dates from engineering drawing, where a spline was a piece of flexible wood used to draw smooth curves
- control points are adjusted by the user to control shape of curve

\section*{Splines - History}
- draftsman used 'ducks' and strips of wood (splines) to draw curves
- wood splines have secondorder continuity, pass through the control points


\section*{Hermite Spline}
- hermite spline is curve for which user provides:
- endpoints of curve
- parametric derivatives of curve at endpoints
- parametric derivatives are \(d x / d t, d y / d t, d z / d t\)
- more derivatives would be required for higher order curves

\section*{Hermite Cubic Splines}
- example of knot and continuity constraints


Hermite Specification

\section*{Hermite Spline (2)}
- say user provides \(x_{0}, x_{1}, x_{0}^{\prime}, x_{1}^{\prime}\)
- cubic spline has degree 3 , is of the form:
\[
x=a t^{3}+b t^{2}+c t+d
\]
- for some constants \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) and d derived from the control points, but how?
- we have constraints:
- curve must pass through \(x_{0}\) when \(t=0\)
- derivative must be \(x_{0}^{\prime}\) when \(t=0\)
- curve must pass through \(x_{1}\) when \(t=1\)
derivative must be \(x_{1}^{\prime}\) when \(t=1\)

\section*{Hermite Spline (3)}
- solving for the unknowns gives
\[
\begin{aligned}
& a=-2 x_{1}+2 x_{0}+x_{1}^{\prime}+x_{0}^{\prime} \\
& b=3 x_{1}-3 x_{0}-x_{1}^{\prime}-2 x_{0}^{\prime} \\
& c=x_{0}^{\prime} \\
& d=x_{0}
\end{aligned}
\]
- rearranging gives
\[
\begin{aligned}
x & =x_{1}\left(-2 t^{3}+3 t^{2}\right) \\
& +x_{0}\left(2 t^{3}-3 t^{2}+1\right) \\
& + \text { or }_{1}^{\prime}\left(t^{3}-t^{2}\right) \\
& +x_{0}^{\prime}\left(t^{3}-2 t^{2}+t\right)
\end{aligned}
\]

\section*{Basis Functions}
- a point on a Hermite curve is obtained by multiplying each control point by some function and summing
- functions are called basis functions


\section*{Splines in 2D and 3D}
- so far, defined only 1D splines:
\(x=f\left(t: x_{0}, x_{1}, x^{\prime}, x^{\prime}{ }_{1}\right)\)
- for higher dimensions, define control points in higher dimensions (that is, as vectors)
\[
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{llll}
x_{1} & x_{0} & x_{1}^{\prime} & x_{0}^{\prime} \\
y_{1} & y_{0} & y_{1}^{\prime} & y_{0}^{\prime} \\
z_{1} & z_{0} & z_{1}^{\prime} & z_{0}^{\prime}
\end{array}\right]\left[\begin{array}{cccc}
-2 & 3 & 0 & 0 \\
2 & -3 & 0 & 1 \\
1 & -1 & 0 & 0 \\
1 & -2 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right]
\]


\section*{Bézier Curves}
- derivative values of Bezier curve at knots dependent on adjacent points
\[
\begin{aligned}
& \nabla p_{1}=3\left(p_{2}-p_{1}\right) \\
& \nabla p_{4}=3\left(p_{4}-p_{3}\right)
\end{aligned}
\]

\section*{Bézier vs. Hermite}
- can write Bezier in terms of Hermite - note: just matrix form of previous
\[
\underbrace{\left[\begin{array}{cc}
x_{1} & y_{1} \\
x_{2} & y_{2} \\
\frac{d x_{1}}{d t} & \frac{d y_{1}}{d t} \\
\frac{d x_{2}}{d t} & \frac{d y_{2}}{d t}
\end{array}\right]}_{\mathrm{G}_{\text {Hemmie }}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
-3 & 3 & 0 & 0 \\
0 & 0 & -3 & 3
\end{array}\right] \underbrace{\left[\begin{array}{ll}
x_{1} & y_{1} \\
x_{2} & y_{2} \\
x_{3} & y_{3} \\
x_{4} & y_{4}
\end{array}\right]}_{\mathrm{G}_{\text {seager }}}
\]

\section*{Bézier Basis, Geometry Matrices}
\[
\left[\begin{array}{ll}
a_{x} & a_{y} \\
b_{x} & b_{y} \\
c_{x} & c_{y} \\
d_{x} & d_{y}
\end{array}\right]=\underbrace{\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]}_{\mathbf{M}_{\text {Reier }}} \underbrace{\left[\begin{array}{ll}
x_{1} & y_{1} \\
x_{4} & y_{2} \\
x_{3} & y_{3} \\
x_{4} & y_{4}
\end{array}\right]}_{\mathbf{G}_{\text {Bezer }}}
\]
- but why is \(\mathrm{M}_{\text {Bezier }}\) a good basis matrix?

\section*{Bézier Blending Functions}
- every point on curve is linear combination of control points
- weights of combination are all positive
- sum of weights is 1
- therefore, curve is a convex combination of the control points


\section*{Bézier Curves}
- curve will always remain within convex hull (bounding region) defined by control points


85

\section*{Bézier Curves}
- interpolate between first, last control points
- \(1^{\text {st }}\) point's tangent along line joining \(1^{\text {st }}, 2^{\text {nd }} p\) ts
- \(4^{\text {th }}\) point's tangent along line joining \(3^{\text {rd }}, 4^{\text {th }} \mathrm{pts}\)



\section*{Comparing Hermite and Bezier}


\section*{Rendering Bezier Curves: Simple}
- evaluate curve at fixed set of parameter values, join points with straight lines
- advantage: very simple
- disadvantages:
- expensive to evaluate the curve at many points
no easy way of knowing how fine to sample points, and maybe sampling rate must be different along curve
- no easy way to adapt: hard to measure deviation of line segment from exact curve

\section*{Rendering Beziers: Subdivision}
- a cubic Bezier curve can be broken into two shorter cubic Bezier curves that exactly cover original curve
- suggests a rendering algorithm:
- keep breaking curve into sub-curves
- stop when control points of each sub-curve are nearly collinear
- draw the control polygon: polygon formed by control points

\section*{Sub-Dividing Bezier Curves}
- step 1: find the midpoints of the lines joining the original control vertices. call them \(M_{01}\), \(M_{12}, M_{23}\)


\section*{Sub-Dividing Bezier Curves}
- step 2: find the midpoints of the lines joining \(M_{01}, M_{12}\) and \(M_{12}, M_{23}\). call them \(M_{012}, M_{123}\)


\section*{Sub-Dividing Bezier Curves}
- step 3: find the midpoint of the line joining \(M_{012}, M_{123}\). call it \(M_{0123}\)


\section*{Sub-Dividing Bezier Curves}
- curve \(P_{0}, M_{01}, M_{012}, M_{0123}\) exactly follows original from \(t=0\) to \(t=0.5\)
- curve \(M_{0123}, M_{123}, M_{23}, P_{3}\) exactly follows original from \(t=0.5\) to \(t=1\)


\section*{Longer Curves}

\section*{Piecewise Bezier: Continuity Problems}
- a single cubic Bezier or Hermite curve can only capture a small class of curves
- at most 2 inflection points
- one solution is to raise the degree
- allows more control, at the expense of more control points and higher degree polynomials
- control is not local, one control point influences entire curve
- better solution is to join pieces of cubic curve together into piecewise cubic curves
- total curve can be broken into pieces, each of which is cubic
local control: each control point only influences a limited part of the curve
- interaction and design is much easier

demo: www.cs.princeton.edu/~min/cs426/jar/bezier.htm

\section*{Continuity}
- when two curves joined, typically want some degree of continuity across knot boundary
- C0, "C-zero", point-wise continuous, curves share same point where they join
- C1, "C-one", continuous derivatives
- C2, "C-two", continuous second derivatives


\section*{Geometric Continuity}
- derivative continuity is important for animation
- if object moves along curve with constant parametric speed, should be no sudden jump at knots
- for other applications, tangent continuity suffices
- requires that the tangents point in the same direction
- referred to as \(G^{1}\) geometric continuity
- curves could be made \(C^{1}\) with a re-parameterization
- geometric version of \(C^{2}\) is \(G^{2}\), based on curves having the same radius of curvature across the knot

\section*{Achieving Continuity}
- Hermite curves
- user specifies derivatives, so \(C^{1}\) by sharing points and derivatives across knot
- Bezier curves
- they interpolate endpoints, so \(C^{0}\) by sharing control pts
- introduce additional constraints to get \(C^{1}\)
- parametric derivative is a constant multiple of vector joining first/last 2 control points
- so \(C^{1}\) achieved by setting \(P_{0,3}=P_{1,0}=J\), and making \(P_{0,2}\) and \(J\) and
\(P_{1,1}\) collinear, with \(J-P_{0,2}=P_{1,1}-J\)
- \(C^{2}\) comes from further constraints on \(P_{0,1}\) and \(\mathrm{P}_{1,2}\)
- leads to..

\section*{B-Spline Curve}
- start with a sequence of control points
- select four from middle of sequence
\(\left(\mathrm{p}_{\mathrm{i}-2}, \mathrm{p}_{\mathrm{i}-1}, \mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{i}+1}\right)\)
- Bezier and Hermite goes between \(p_{i-2}\) and \(p_{i+1}\)
- B-Spline doesn't interpolate (touch) any of them but approximates the going through \(\mathrm{p}_{\mathrm{i}-1}\) and \(\mathrm{p}_{\mathrm{i}}\)



\section*{Project 3}
- bumpy plane
- vertex height varies randomly by \(20 \%\) of face width
- world coordinate light, camera coord light
- regenerate terrain
- toggle colors
- six triangles around a vertex
- [demo]


\section*{Project 3: Normals}
- calculate once (per terrain)
- per-face normals
- then interpolate for per-vertex
- use when drawing
- specify interleaved with vertices
- explicitly drawing normals
- bristles at vertices
- visual debugging

\section*{Project 3: Data Structures}
- suggestion: 100x100x4 array for vertex coords
- colors?
- normals? per-face, per-vertex

\section*{Project 4}
- create your own graphics game or tutorial
- required functionality
- 3D, interactive, lighting/shading
- texturing, picking, HUD
- advanced functionality pieces
- two for 1-person team
- four for 2-person team
- six for 3-person eam

\section*{P4: Advanced Functionality}
- (new) navigation
- procedural modelling/textures
- particle systems
- collision detection
- simulated dynamics
- level of detail control
- advanced rendering effects
- whatever else you want to do
- proposal is a check with me

\section*{P4 Proposal}
- due Wed 1 Jun 4pm
- either electronic handin, or box handin for hardcopy
- short (< 1 page) description
- how game works
- how it will fulfill required functionality
- advanced functionality
- must include at least one annotated screenshot mockup sketch
- hand-drawn scanned or using computer tools

\section*{P4 Writeup}
- what: a high level description of what you've created, including an explicit list of the advanced functionality items
- how: mid-level description of the algorithms and data structures that you've used
- howto: detailed instructions of the low-level mechanics of how to actually play (keyboard controls, etc)
- sources: sources of inspiration and ideas (especially any source code you looked at for inspiration on the Internet)
- include screen shots with handin for HOF eligibility

\section*{P4 Grading}
- final project due 11:59pm Fri Jun 17
- face to face demos again
- I will be grading
- grading
- \(50 \%\) base: required functions, gameplay, etc
- \(50 \%\) advanced functionality
- buckets, tentative mapping
- zero = 0
- minus \(=40\)
- check-minus \(=60\)
- check \(=80\)
- check-plus = 100
- plus 105```

