|¥?i$ University of British Columbia
= CPSC 314 Computer Graphics
May-June 2005

Tamara Munzner
Compositing, Clipping, Curves

Week 3, Thu May 26

http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005

News
= extra lab coverage: Mon 12-2, Wed 2-4

= P2 demo slot signup sheet

handing back H1 today

= we'll try to get H2 back tomorrow
= we will put them in bin in lab, next to extra handouts
= solutions will be posted

= you don’t have to tell us you're using grace days
= only if you’re turning it in late and you do *not* want
to use up grace days
= grace days are integer quantities

Homework 1 Common Mistakes

= Q4, Q5: too vague

= don’t just say “rotate 90", say around which axis, and in which
direction (CCW vs CW)

= be clear on whether actions are in old coordinate frame or new
coordinate frame
= Q8: confusion on push/pop and complex operations
= wrong: object drawn in wrong spot! elPushMatrix(;
glTranslate(..a..);
glRotate(..);
draw things
lPop();
= correct: object drawn in right spot aAPUShMatrix(;
glTranslate(..a..);
. . glRotate(..);
= both: nice modular function St .y
that doesn’t change modelview matrix draw things
lPop();

Schedule Change
= HW 3 out Thu 6/2, due Wed 6/8 4pm

Poll

= which do you prefer?
= P4 due Fri, final Sat
= final Thu in-class, P4 due Sat

Midterm Logistics

= Tuesday 12-12:50

= Sit spread out: every other row, at least three
seats between you and next person

= you can have one 8.5x11” handwritten one-
sided sheet of paper
= keep it, can write on other side too for final
= calculators ok

Page 1

Midterm Topics

= H1, P1, H2, P2

= first three lectures

= topics
= Intro, Math Review, OpenGL
= Transformations I/11/11l
= Viewing, Projections I/1l

Reading: Today

= FCG Chapter 11
= pp 209-214 only: clipping

= FCG Chap 13

= RB Chap Blending, Antialiasing, ...
= only Section Blending

Reading: Next Time
= FCG Chapter 7

Errata
L) 214
= f(p) > 0 is “outside” the plane
L) 234

= For quadratic Bezier curves, N=3
= W_iAN(t) = (N-1) 1/ (il (N--1)1)....

Review: lllumination

= transport of energy from light sources to
surfaces & points
= includes direct and indirect illumination

Images by Henrik Wann Jensen

Review: Light Sources

= directional/parallel lights
= point at infinity: (x,y,z,0)T

= point lights ﬁ
= finite position: (x,y,z,1)7

= spotlights
= position, direction, angle

= ambient lights

Page 2

Review: Light Source Placement

= geometry: positions and directions
= standard: world coordinate system
= effect: lights fixed wrt world geometry
= alternative: camera coordinate system
= effect: lights attached to camera (car headlights)

Review: Reflectance

= specular. perfect mirror with no scattering
= gloss: mixed, partial specularity
= diffuse: all directions with equal energy

specular + glossy + diffuse =
reflectance distribution

Review: Reflection Equations

1 n
Liitfuse = Ka Ilight (mel) . ;

n,.
sh
= ksIIight (V ® r) R

specular

_ ﬁ@
! /I/ 3
‘ ol /7 2(N(N-L)-L=R

15

Review: Reflection Equations 2

= Blinn improvement e S hy 11
nshinf
Ispecular = ksIIight (h * n) ’ !

h=(1+v)/2

= full Phong lighting model
= combine ambient, diffuse, specular components

#lights

n,.
= shiny
Itotal _ksIambient + ZII (kd (n.li)+ks(v.ri))
i=1
= don'’t forget to normalize all vectors: n,l,r,v,h "

Review: Lighting

= lighting models
= ambient
= normals don’t matter
= Lambert/diffuse
= angle between surface normal and light
= Phong/specular
= surface normal, light, and viewpoint

Review: Shading Models

= flat shading
= compute Phong lighting once for entire
polygon
= Gouraud shading

= compute Phong lighting at the vertices and
interpolate lighting values across polygon

= Phong shading
= compute averaged vertex normals
18

= interpolate normals across polygon and
perform Phong lighting across polygon

Page 3

Correction/Review: Computing Normals

= per-vertex normals by interpolating per-facet
normals

= OpenGL supports both
= computing normal for a polygon
= three points form two vectors
= pick a point
= vectors from
= A: point to previous

= B:point to next c-b
= AxB: normal of plane direction
= normalize: make unit length c a-b
= which side of plane is up?
= counterclockwise a

point order convention

Review: Non-Photorealistic Shading

= cool-to-warm shading &, =%

= draw silhouettes: if (e-n,)(e-n,) <0, e=edge-eye vector
= draw creases: if (n,-n,) <threshold

c=kye, + =k, e,

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing. html 20

End of Class Last Time

= use version control for your projects!
= CVS, RCS
= partially work through problem with lighting

Compositing

Compositing

= how might you combine multiple elements?
= foreground color A, background color B

A over B AinB AoutB AatopB AxorB

BITFEIIF FIIAFIEI(1IIEAFIIR MIITEET 1EITFEIF
— wEan R N |

AandB }. 4 $2 4 $2 ¢ {0 84
¥ oel 98¢ 49(1449 4} ool
2 2231 Praseaved b 130 L 28l I8 223
188873334 gidn 1o3IRFFII > »Z 34 P88 1

Partially }2¢ re4F2e oo rosFesdew: reer W ress
transparent : ¢ Seageti 3t 0 ol 9]

Aann (SR ISR 24 |
- 2 biaadabesl INEERYl idebaded! IoEERERIN

Conceptual }h
sub-pixel
overlay
= B

Premultiplying Colors

specify opacity with alpha channel: (r,g,b,c)
= o=1:0paque, a=.5: translucent, a=0: transparent

= AoverB
= C=0A+(1-0)B

= but what if B is also partially transparent?
« C=0A+(1-a) B = pB+ A+ BB - B
= y=Pp+(1-fla=p+a-oap
= 3 multiplies, different equations for alpha vs. RGB

= premultiplying by alpha
= C'=yC,B’=pB,A’=0A
= C=B"+A"-0B’

< y=B+a-of
= 1 multiply to find C, same equations for alpha and RGB

Page 4

Clipping

Rendering Pipeline

Geometr Model/View B Perspective _
Dahbasey = Transform. [~ Lighting |~ Tra,.p:fo,-m_ rt Clipping 5:‘”

Scan
Conversion

Depth _ Frame-
Test Blending buffer

1

|— Texturing |—

Next Topic: Clipping

= we've been assuming that all primitives (lines,
triangles, polygons) lie entirely within the viewport

= in general, this assumption will not hold:

S

Clipping

= analytically calculating the portions of
primitives within the viewport

/v/
™~

Why Clip?

= bad idea to rasterize outside of framebuffer
bounds

= also, don’t waste time scan converting pixels
outside window

= could be billions of pixels for very close
objects!

Line Clipping

= 2D

= determine portion of line inside an axis-aligned
rectangle (screen or window)

= 3D

= determine portion of line inside axis-aligned
parallelpiped (viewing frustum in NDC)

= simple extension to 2D algorithms

Page 5

Clipping

= naive approach to clipping lines:
for each line segment
for each edge of viewport
find intersection point
pick “nearest” point
if anything is left, draw it

p ” _»B
= what do we mean by “nearest”? /D
= how can we optimize this? ~Ic
A

Trivial Accepts

= big optimization: trivial accept/rejects
= Q: how can we quickly determine whether a line
segment is entirely inside the viewport?

= A: test both endpoints

N

Trivial Rejects

= Q: how can we know a line is outside
viewport?

= A: if both endpoints on wrong side of same
edge, can trivially reject line

N

Clipping Lines To Viewport

= combining trivial accepts/rejects

trivially accept lines with both endpoints inside all edges
of the viewport

trivially lines with both endpoints

otherwise, reduce to trivial cases by splitting into two

segments

AN

Cohen-Sutherland Line Clipping

= outcodes
= 4 flags encoding position of a point relative to
top, bottom, left, and right boundary
1010 1000 1001
« OC(p1)=0010 S YV
= OC(p2)=0000 *pl
. OCp3)=1001 0010 0000 0001

Y=Ymin
0110 0100 0101

Cohen-Sutherland Line Clipping

= assign outcode to each vertex of line to test
= line segment: (p1,p2)
= trivial cases
= OC(p1)== 0 && OC(p2)==0
= both points inside window, thus line segment completely
visible (trivial accept)
= (OC(pl) & OC(p2))!=0
= there is (at least) one boundary for which both points are
outside (same flag set in both outcodes)

= thus line segment completely outside window (trivial
reject)

Page 6

Cohen-Sutherland Line Clipping

if line cannot be trivially accepted or rejected,
subdivide so that one or both segments can be
discarded

pick an edge that the line crosses ()

intersect line with edge ()

discard portion on wrong side of edge and assign
outcode to new vertex

apply trivial accept/reject tests; repeat if necessary

Cohen-Sutherland Line Clipping

= if line cannot be trivially accepted or rejected,
subdivide so that one or both segments can be
discarded
= pick an edge that the line crosses
= check against edges in same order each time
= for example: top, bottom, right, left

A/

Cohen-Sutherland Line Clipping

= intersect line with edge (how?)

Cohen-Sutherland Line Clipping

= discard portion on wrong side of edge and assign
outcode to new vertex

D

c~

A/

= apply trivial accept/reject tests and repeat if
necessary

Viewport Intersection Code

= (X4, Y1), (Xo, yo) intersect vertical edge at X;;gy
* Yintersect = Y1 + m(xright - Xy)
= M=(Y5-Y1)/(Xa-X1)
(%21 Y2)
(X4, ¥4) Xright
= (X4, ¥q), (Xo, ¥o) intersect horiz edge at yyoiom

= Xintersect = X1 + (Ybottom — ¥1)/M
= M=(yo-Y1)/(Xo-Xy) (X2, ¥o)

41

Cohen-Sutherland Discussion

= use opcodes to quickly eliminate/include lines

= best algorithm when trivial accepts/rejects are
common

= must compute viewport clipping of remaining
lines
= non-trivial clipping cost
= redundant clipping of some lines
= more efficient algorithms exist

42

Page 7

Line Clipping in 3D

= approach
= clip against parallelpiped in NDC
= after perspective transform
= means that clipping volume always the same
= Xmin=ymin= -1, xmax=ymax= 1 in OpenGL

= boundary lines become boundary planes
= but outcodes still work the same way
= additional front and back clipping plane
= zmin = -1, zmax = 1 in OpenGL

43

Polygon Clipping

= Objective
= 2D: clip polygon against rectangular window

= or general convex polygons

= extensions for non-convex or general polygons
= 3D: clip polygon against parallelpiped

Polygon Clipping

= not just clipping all boundary lines
= may have to introduce new line segments

NN

45

Why Is Clipping Hard?

= what happens to a triangle during clipping?
= possible outcomes

[
triangle = triangle triangle = quad triangle = 5-gon

= how many sides can a clipped triangle have?

How Many Sides?

= seven...

47

Why Is Clipping Hard?

= a really tough case:

Page 8

Why Is Clipping Hard?

= a really tough case:

concave polygon = multiple polygons

49

Sutherland-Hodgeman Clipping

= basic idea:
= consider each edge of the viewport individually
= clip the polygon against the edge equation
= after doing all edges, the polygon is fully clipped

2]
/
~7

Polygon Clipping

= classes of polygons

= triangles

= convex

= concave

= holes and self-intersection

Sutherland-Hodgeman Clipping

= basic idea:
= consider each edge of the viewport individually
= clip the polygon against the edge equation
= after doing all edges, the polygon is fully clipped

/

4
~7

Sutherland-Hodgeman Clipping

= basic idea:
= consider each edge of the viewport individually
= clip the polygon against the edge equation
= after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping

= basic idea:
= consider each edge of the viewport individually
= clip the polygon against the edge equation
= after doing all edges, the polygon is fully clipped

Page 9

Sutherland-Hodgeman Clipping

= basic idea:
= consider each edge of the viewport individually
= clip the polygon against the edge equation
= after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping

= basic idea:
= consider each edge of the viewport individually
= clip the polygon against the edge equation
= after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping

= basic idea:
= consider each edge of the viewport individually
= clip the polygon against the edge equation
= after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping

= basic idea:
= consider each edge of the viewport individually
= clip the polygon against the edge equation
= after doing all edges, the polygon is fully clipped

ﬁ

Sutherland-Hodgeman Clipping

= basic idea:
= consider each edge of the viewport individually
= clip the polygon against the edge equation
= after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Algorithm

= input/output for algorithm
= input: list of polygon vertices in order
= output: list of clipped poygon vertices
consisting of old vertices (maybe) and new
vertices (maybe)
= basic routine
= go around polygon one vertex at a time
= decide what to do based on 4 possibilities
= is vertex inside or outside?
= is previous vertex inside or outside?

Page 10

10

Clipping Against One Edge

= pli] inside: 2 cases
inside outside inside | outside
pli-1]

.‘/np/p.[i-l]

pli]

pli]

output: p[i] output: p, plil 6

Clipping Against One Edge

= p[i] outside: 2 cases

inside outside inside | outside
pli-1] plil

pli]

pli-1]

output: p output: nothing 6

Clipping Against One Edge
clipPolygonToEdge(p[n], edge) {
for(i=0;i<n;i++){
if(p[i] inside edge) {
if(p[i-1] inside edge) output p[i]; // p[-1]= p[n-1]
else {
p= intersect(p[i-1], pli], edge); output p, plil;
}
} else { /1 pli] is outside edge
if(p[i-1] inside edge) {
p= intersect(p[i-1], p[l], edge); output p;
}

Sutherland-Hodgeman Example

inside outside

7
P p4
—~ L

pl

Sutherland-Hodgeman Discussion

= similar to Cohen/Sutherland line clipping
= inside/outside tests: outcodes

= intersection of line segment with edge:
window-edge coordinates

= clipping against individual edges independent
= great for hardware (pipelining)
= all vertices required in memory at same time
= not so good, but unavoidable

= another reason for using triangles only in
hardware rendering

65

Sutherland/Hodgeman Discussion

= for rendering pipeline:
= re-triangulate resulting polygon
(can be done for every individual clipping
edge)

A

Page 11

11

Curves

67

Parametric Curves

= parametric form for a line:
x=xt+({1-1)x
y=yt +(d=0y
2=zt +(1-1)z
= X, y and z are each given by an equation that
involves:
= parameter ¢
= some user specified control points, x, and x;
= this is an example of a parametric curve

Splines

= a spline is a parametric curve defined by
control points
= term “spline” dates from engineering drawing,
where a spline was a piece of flexible wood
used to draw smooth curves
= control points are adjusted by the userto
control shape of curve

69

Splines - History

= draftsman used ‘ducks’ and
strips of wood (splines) to
draw curves

= wood splines have second-
order continuity, pass
through the control points

————

B O |

a duck (weight)

ducks trace out curve

Hermite Spline

= hermite spline is curve for which user
provides:
= endpoints of curve
= parametric derivatives of curve at endpoints
= parametric derivatives are dx/dt, dy/dt, dz/dt

= more derivatives would be required for higher
order curves

Hermite Cubic Splines

= example of knot and continuity constraints

Vp, sz/
/ t=1
=0 P2

Hermite Specification

Page 12

12

Hermite Spline (2)

= say user provides x,,x,,x;,x/
= cubic spline has degree 3, is of the form:
x=at’ +bt* +ct+d
= for some constants a, b, ¢ and d derived from the
control points, but how?
= we have constraints:
= curve must pass through x, when t=0
= derivative must be x’, when t=0
= curve must pass through x, when t=1
= derivative must be x’; when t=1

Hermite Spline (3)

= solving for the unknowns gives

a==2x+2x,+ X/ +x;
b=3x,—3x,— x| —2x,
,

c=Xx,

d=x,

= rearranging gives
3
x=x,(-20+34) _22 2 g (1) ’2
+x,(2t —’31’+I) or x=ly x ¥ x t
+X/(F =) 1 -1 0 0f¢
+x(8 =217 +1) 1 -2 1 0]1

Basis Functions

= a point on a Hermite curve is obtained by
multiplying each control point by some function and
summing

= functions are called basis functions

Sample Hermite Curves

/\V\Jm
sz//
A

Splines in 2D and 3D

= so far, defined only 1D splines:
X=Ff(t:Xp, X1, X 0, X';)

= for higher dimensions, define control points in
higher dimensions (that is, as vectors)

, -2 3 0 0o]#
X XX xl’ X, > 30 1|
YI=In Y y: y? 10 0|
SR R S B

Bézier Curves

= similar to Hermite, but more intuitive
definition of endpoint derivatives

= four control points, two of which are knots

P
Vp, Vp: / support”
/ =1 - “chord” P,
=1

=0 P2 [
Bézier

Hermite Specification Specification P

Page 13

13

Bézier Curves Bézier vs. Hermite

o] = can write Bezier in terms of Hermite
= derivative values of Bezier curve at knots « note: just matrix form of previous

dependent on adjacent points _ _
X0 L0 0 0fx »

Vp, =3(p, -
p=3p,-p) Y 00 0 1|x
Vp4 = 3(]74 - p3) =

& dy
i -3 3 0 0 X3 Vs
% %) Lo 0 =3 3]k y]
— —_—
GH@rmxt@ GBezxzr
79 80
Bézier vs. Hermite Bézier Basis, Geometry Matrices

= Now substitute this in for previous Hermite
a, a] [-1 3 =3 1]x
bo b |3 -6 3
a, a2 -2 1 11 o o o] x» o, ¢ | |-3 3 o
d, d, 1 0 0
Mo

= but why is Mg, @ good basis matrix?

< <
= =
I W
= ~
w w

<

e
IS
=
N

e -7 the J4d
M giemmite G pert
81 82
Bézier Blending Functions Bézier Blending Functions

= look at blending functions

every point on curve is

-0 [p i inati I))
= family of polynomials called ' linear (I:onjbmatlon of Begier Blending /
order-3 Bernstein polynomials 3= | p, control points w unctions
= C(3, k) th (1-1)3%; 0<= k<=3 P(1)= = weights of combination
’ ’ 2 . 08|
= all positive in interval [0,1] 3A-0)] | s are all positive N
. sum is equal to 1 . » = sum of weights is 1 .
! = therefore, curve is a
Convex Combination Of 01 o1 02 03 04 05 06 07 08 03 ix
the control points '
83 84

Page 14

Bézier Curves

= curve will always remain within convex hull
(bounding region) defined by control points

@ ©

85

Bézier Curves
= interpolate between first, last control points

= 18t point’s tangent along line joining 1st, 2nd pts
= 4™ point's tangent along line joining 39, 4th pts

@

Comparing Hermite and Bézier

Hermite Bézier
~ - i ! p—
< el oo \ o
// _ SN —xo| o4 — 83
” 02 \><
0 ,,/// T~
SN TN A ~ ;
t" } \ l/ \ —~ / \\\‘ _f\/"
] N \ / \ B ey
h: '\ //“ . » P "t
{ D Vi
S S Z// / AR
7 L NN
T

87

Comparing Hermite and Bezier

demo: www.siggraph.org/education/materials/HyperGraph/modeling/splines/demoprog/curve. html

12

I S 04 —&
— 02 \\><
. T
AN Y ; 2 .‘
N , L A3
f i \\/ l 4 \ / \‘ e
OO N, T i
\ / | . Z// / Y %
"~ B e T
—]ﬁ/l f S =\,

Rendering Bezier Curves: Simple

= evaluate curve at fixed set of parameter
values, join points with straight lines
= advantage: very simple
= disadvantages:
= expensive to evaluate the curve at many
points
= no easy way of knowing how fine to sample °
points, and maybe sampling rate must be
different along curve

= NO easy way to adapt: hard to measure
deviation of line segment from exact curve

89

Rendering Beziers: Subdivision

= a cubic Bezier curve can be broken into two
shorter cubic Bezier curves that exactly cover
original curve

= suggests a rendering algorithm:
= keep breaking curve into sub-curves

= stop when control points of each sub-curve
are nearly collinear

= draw the control polygon: polygon formed by
control points

90

Page 15

15

Sub-Dividing Bezier Curves

= step 1: find the midpoints of the lines joining
the olr\ijqinal control vertices. call them M,,,
M12! 23

MlZ

91

Sub-Dividing Bezier Curves

= step 2: find the midpoints of the lines joining
My;, M,,and M,,, M, call them My, M, 5

92

Sub-Dividing Bezier Curves

= step 3: find the midpoint of the line joining
Mo12: My call it Mz

93

Sub-Dividing Bezier Curves

= curve Py, My;, My,,, M), exactly follows original
from =0 to t=0.5

= curve My o3, Myp3, My, P;exactly follows
original from =0.5 to t=1

94

Sub-Dividing Bezier Curves

= continue process to create smooth curve

95

de Casteljau’s Algorithm

= can find the point on a Bezier curve for any
parameter value t with similar algorithm
« for t=0.25, instead of taking midpoints take points
0.25 of the way

MlZ

P,

demo: www.saltire.com/applets/advanced_geometry/spline/spline.htm 9%

Page 16

16

Longer Curves

= asingle cubic Bezier or Hermite curve can only capture a
small class of curves
= at most 2 inflection points
= one solution is to raise the degree

= allows more control, at the expense of more control points and
higher degree polynomials

= control is not local, one control point influences entire curve

= better solution is to join pieces of cubic curve together into
piecewise cubic curves

= total curve can be broken into pieces, each of which is cubic

= local control: each control point only influences a limited part of
the curve

= interaction and design is much easier

97

Piecewise Bezier: Continuity Problems

demo: www.cs.princeton.edu/~min/cs426/jar/bezier.html

98

Continuity

= when two curves joined, typically want some
degree of continuity across knot boundary
= CO0, “C-zero”, point-wise continuous, curves
share same point where they join
= C1, “C-one”, continuous derivatives
= C2, “C-two”, continuous second derivatives
Co & Cy conljnuity

C, continuity Co & Cy & C; continuity

N
~_/

vy

Geometric Continuity

= derivative continuity is important for animation

=« if object moves along curve with constant parametric
speed, should be no sudden jump at knots

= for other applications, tangent continuity suffices
= requires that the tangents point in the same direction
= referred to as G’ geometric continuity
= curves could be made C’ with a re-parameterization

= geometric version of C?is G?, based on curves
having the same radius of curvature across the knot

100

Achieving Continuity

= Hermite curves
= user specifies derivatives, so C’ by sharing points and
derivatives across knot
= Bezier curves
= they interpolate endpoints, so C? by sharing control pts
= introduce additional constraints to get C’
= parametric derivative is a constant multiple of vector joining
first/last 2 control points
= 50 C’ achieved by setting P, ;=P ,=J, and making P,, and J and
P, ; collinear, with J-Py =P, ;-J
= (2 comes from further constraints on P, ; and P, ,

= leads to...

101

B-Spline Curve

= start with a sequence of control points
= select four from middle of sequence
(P2 Pi-ts Pis Pist)
= Bezier and Hermite goes between p,, and p;,,

= B-Spline doesn't interpolate (touch) any of them but
approximates the going through p,, and p;

P o 0P2 o P
N

P ° °
P, * ? P, P

102

B-Spline B-Spline

= by far the most popular spline used

= |ocality of points
= C,, C,, and C, continuous

Figure 10-41
Local modification of a B-spline curve. Changing one of the control points in (a) produces

demo: www.siggraph.org/education/materials/HyperGraph/modeling/splines/demoprog/curve. html curve (b), which is modified only in the neighborhood of the altered control point

103

R, of

Project 3 Project 3: Normals
= bum lane = calculate once (per terrain
Py p
= vertex height varies randomly by 20% of face = per-face normals
width = then interpolate for per-vertex
= world coordinate light, camera coord light = use when drawing
= regenerate terrain) = specify interleaved with vertices
= toggle colors 3 f = explicitly drawing normals
= six triangles around a vertex « bristles at vertices
= [demo] 4 S| @ = visual debugging
105 106
Project 3: Data Structures Project 4
= suggestion: 100x100x4 array for vertex = create your own graphics game or tutorial
coords = required functionality
= colors?

= 3D, interactive, lighting/shading
= texturing, picking, HUD
= advanced functionality pieces
= two for 1-person team
= four for 2-person team
= six for 3-person eam

= normals? per-face, per-vertex

107 108

Page 18

P4: Advanced Functionality

= (new) navigation

= procedural modelling/textures
= particle systems

= collision detection

= simulated dynamics

= level of detail control

= advanced rendering effects

= whatever else you want to do
= proposal is a check with me

109

P4 Proposal

= due Wed 1 Jun 4pm
= either electronic handin, or box handin for
hardcopy
= short (< 1 page) description
= how game works
= how it will fulfill required functionality
= advanced functionality

= must include at least one annotated
screenshot mockup sketch

= hand-drawn scanned or using computer tools

110

P4 Writeup

= what: a high level description of what you've
created, including an explicit list of the advanced
functionality items

= how: mid-level description of the algorithms and
data structures that you've used

= howto: detailed instructions of the low-level
mechanics of how to actually play (keyboard
controls, etc)

= sources: sources of inspiration and ideas
(especially any source code you looked at for
inspiration on the Internet)

= include screen shots with handin for HOF eligibility

111

P4 Grading

= final project due 11:59pm Fri Jun 17
= face to face demos again
= | will be grading
= grading
= 50% base: required functions, gameplay, etc
= 50% advanced functionality
= buckets, tentative mapping
= zero=0
= minus = 40
= check-minus = 60
= check = 80
= check-plus = 100
= plus 105

112

Page 19

19

