

University of British Columbia CPSC 314 Computer Graphics May-June 2005

Tamara Munzner

Rasterization, Interpolation, Vision/Color

Week 2, Thu May 19

http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005

News

- reminder: extra lab coverage with TAs
 - 12-2 Mondays, Wednesdays
 - for rest of term
 - just for answering questions, no presentations
- signup sheet for P1 demo time
 - Friday 12-5

Reading: Today

- FCG Section 2.11 Triangles (Barycentric Coordinates) p 42-46
- FCG Chap 3 Raster Algorithms, p 49-65except 3.8
- FCG Chap 17 Human Vision, p 293-298
- FCG Chap 18 Color, p 301-311
 - until Section 18.9 Tone Mapping

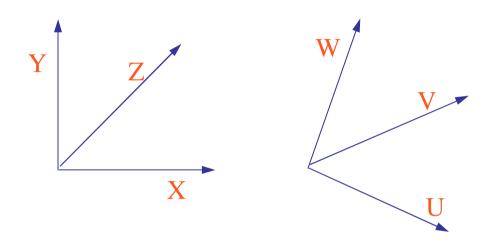
FCG Errata

- p 54
 - triangle at bottom of figure shouldn't have black outline
- p 63
 - The test if numbers a [x] and b [y] have the same sign can be implemented as the test ab [xy] > 0.

Reading: Next Time

- FCG Chap 8, Surface Shading, p 141-150
- RB Chap Lighting

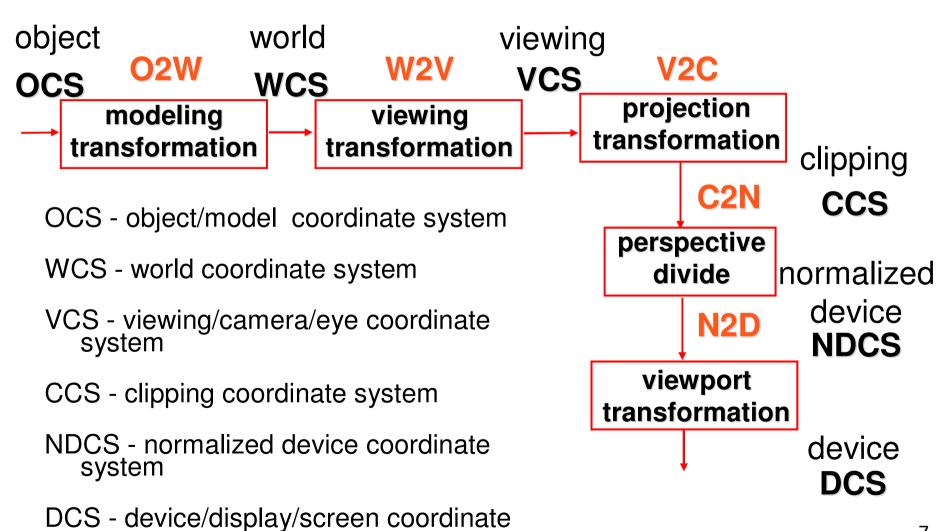
Clarification: Arbitrary Rotation



- problem:
 - given two orthonormal coordinate systems XYZ and UVW
 - find transformation from XYZ to UVW
 - answer:
 - transformation matrix R whose columns are U, V, W:

$$R = \begin{bmatrix} u_x & v_x & w_x \\ u_y & v_y & w_y \\ u_z & v_z & w_z \end{bmatrix}$$

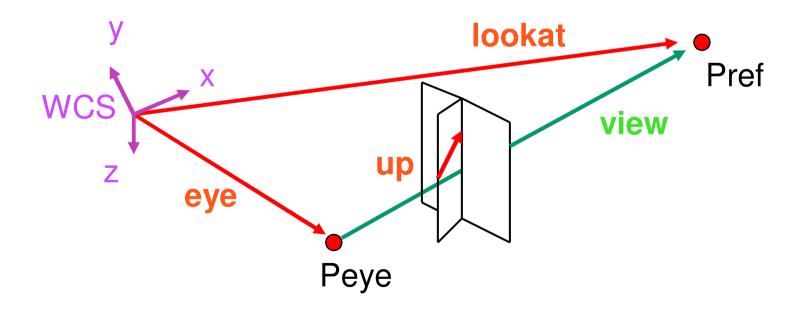
Review: Projective Rendering Pipeline



system

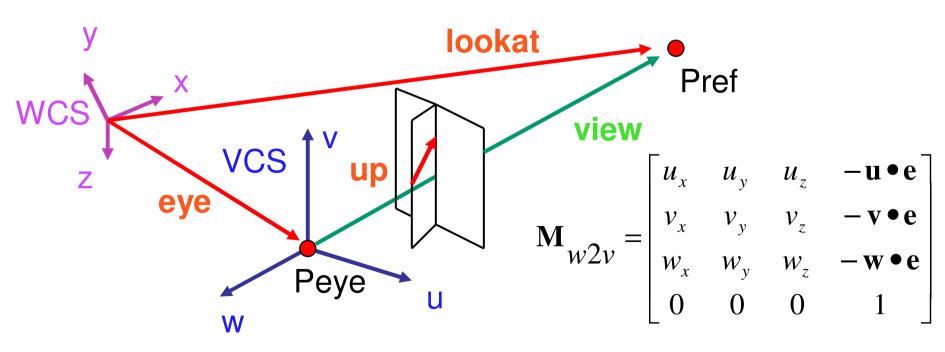
Review: Camera Motion

- rotate/translate/scale difficult to control
- arbitrary viewing position
 - eye point, gaze/lookat direction, up vector



Review: World to View Coordinates

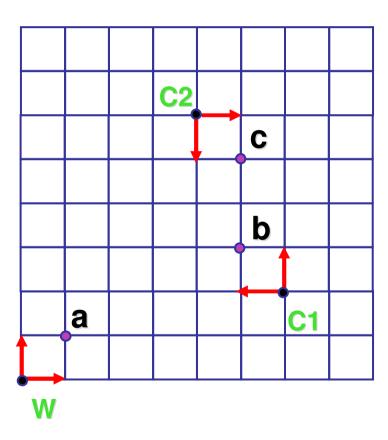
- translate eye to origin
- rotate view vector (lookat eye) to w axis
- rotate around w to bring up into vw-plane



Correction: Moving Camera or World?

- two equivalent operations
 - move camera one way vs. move world other way
- example
 - initial OpenGL camera: at origin, looking along -z axis
 - create a unit square parallel to camera at z = -10
 - translate in z by 3 possible in two ways
 - camera moves to z = -3
 - Note OpenGL models viewing in left-hand coordinates
 - camera stays put, but world moves to -7
- resulting image same either way
 - possible difference: are lights specified in world or view coordinates?

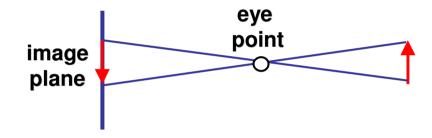
Correction: World vs. Camera Coordinates



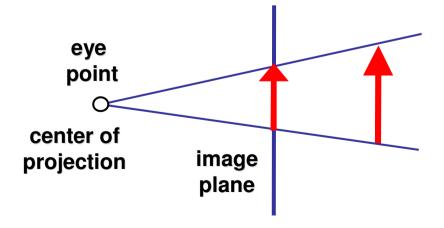
$$a = (1,1)_W$$
 $b = (1,1)_{C1} = (5,3)_W$
 $c = (1,1)_{C2} = (1,3)_{C1} = (5,5)_W$

Review: Graphics Cameras

real pinhole camera: image inverted

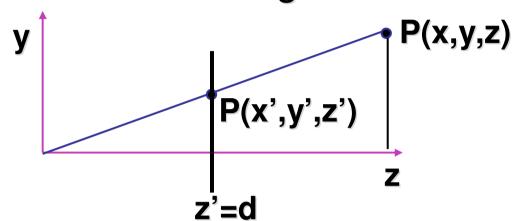


computer graphics camera: convenient equivalent



Review: Basic Perspective Projection

similar triangles



P(x,y,z)
$$\frac{y'}{d} = \frac{y}{z} \rightarrow y' = \frac{y \cdot d}{z}$$
$$x' = \frac{x \cdot d}{z} \qquad z' = d$$

$$\begin{bmatrix}
\frac{x}{z/d} \\
\frac{y}{z/d} \\
d
\end{bmatrix}$$
homogeneous
coords
$$\begin{bmatrix}
x \\
y \\
z \\
z/d
\end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix}$$

Correction: Perspective Projection

desired result for a point [x, y, z, 1]^T projected onto the view plane:

$$\frac{x'}{d} = \frac{x}{z}, \quad \frac{y'}{d} = \frac{y}{z}$$

$$x' = \frac{x \cdot d}{z} = \frac{x}{z/d}$$
, $y' = \frac{y \cdot d}{z} = \frac{y}{z/d}$, $z' = d$

what could a matrix look like to do this?

Correction: Simple Perspective Projection Matrix

$$\begin{bmatrix} x \\ \hline z/d \\ y \\ \hline z/d \\ d \end{bmatrix}$$

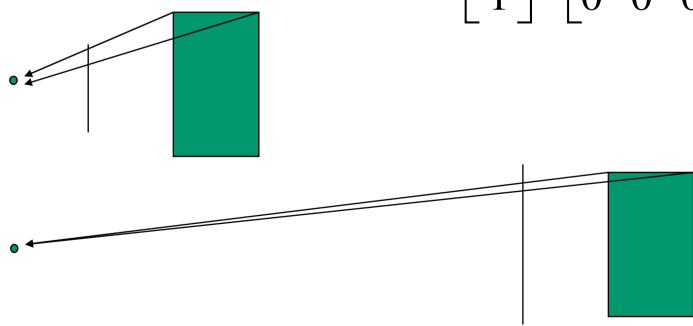
$$\begin{bmatrix} \frac{x}{z/d} \\ \frac{y}{z/d} \\ d \end{bmatrix}$$
 is homogenized version of
$$\begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix}$$
 where $w = z/d$

$$\begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

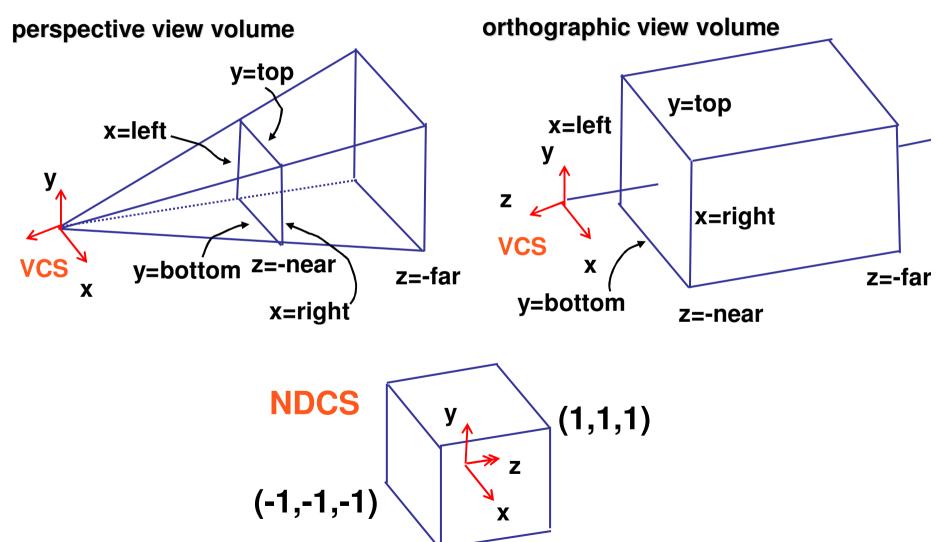
Review: Orthographic Cameras

- center of projection at infinity
- no perspective convergence
- just throw away z values

$$\begin{bmatrix} x_p \\ y_p \\ z_p \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

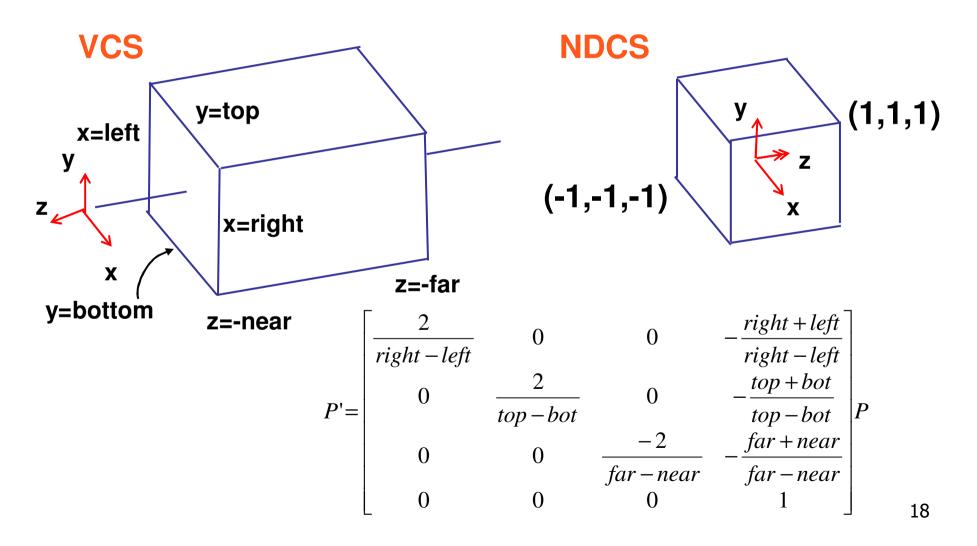


Review: Transforming View Volumes



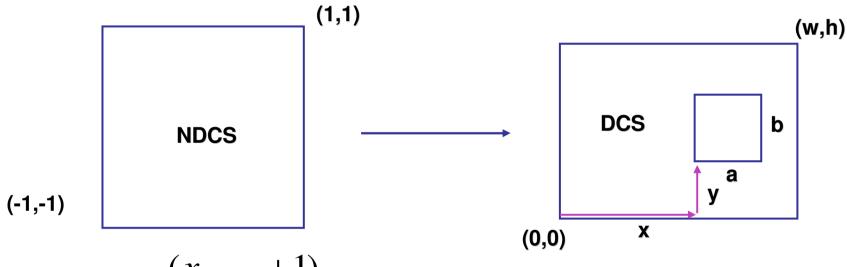
Review: Ortho to NDC Derivation

scale, translate, reflect for new coord sys



Review: NDC to Viewport Transformation

2D scaling and translation



$$x_{DCS} = w \frac{(x_{NDCS} + 1)}{2}$$

$$y_{DCS} = h \frac{(y_{NDCS} + 1)}{2}$$

$$z_{DCS} = \frac{(z_{NDCS} + 1)}{2}$$

OpenGL

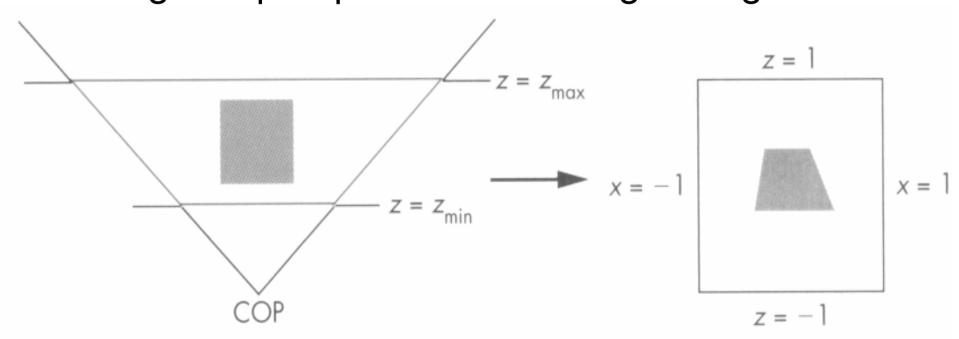
```
glViewport(x,y,a,b);
default:
   glViewport(0,0,w,h);
```

Clarification: N2V Transformation

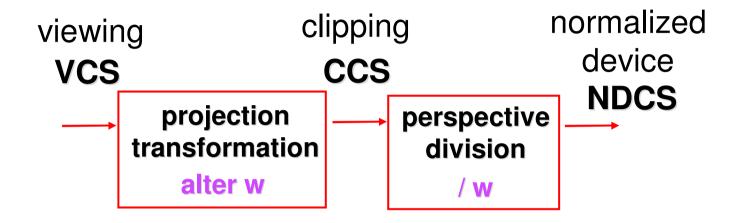
- general formulation
 - translate by
 - x offset, width/2
 - y offset, height/2
 - scale by width/height
 - reflect in y for upper vs. lower left origin
 - FCG includes additional translation for pixel centers at (.5, .5) instead of (0,0)
 - feel free to ignore this

Review: Perspective Normalization

- perspective viewing frustum transformed to cube
- orthographic rendering of cube produces same image as perspective rendering of original

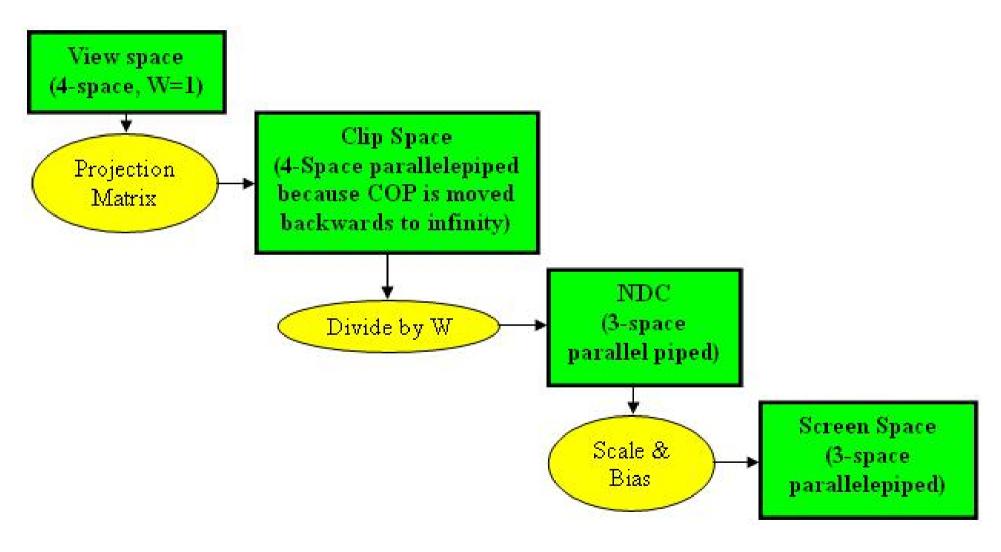


Review: Perspective Normalization



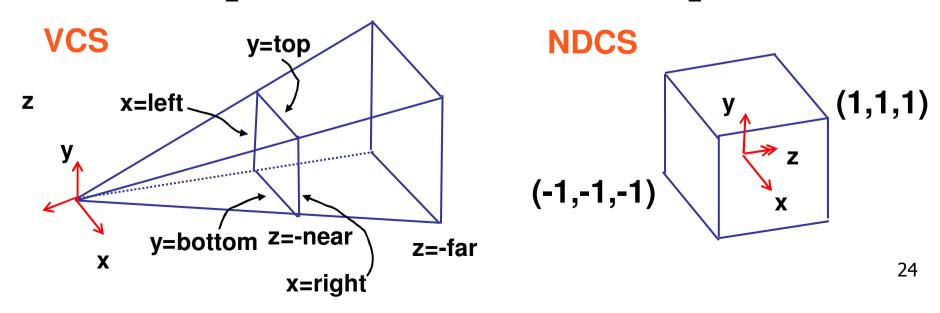
- distort such that orthographic projection of distorted objects is desired persp projection
 - separate division from standard matrix multiplies
 - clip after warp, before divide
 - division: normalization

Review: Coordinate Systems



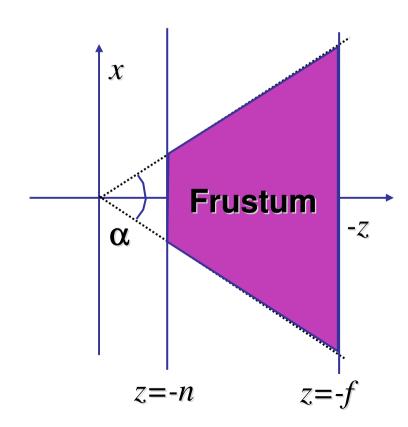
Review: Perspective Derivation

$$\begin{bmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0 \\ 0 & 0 & \frac{-(f+n)}{f-n} & \frac{-2fn}{f-n} \\ 0 & 0 & -1 & 0 \end{bmatrix}$$



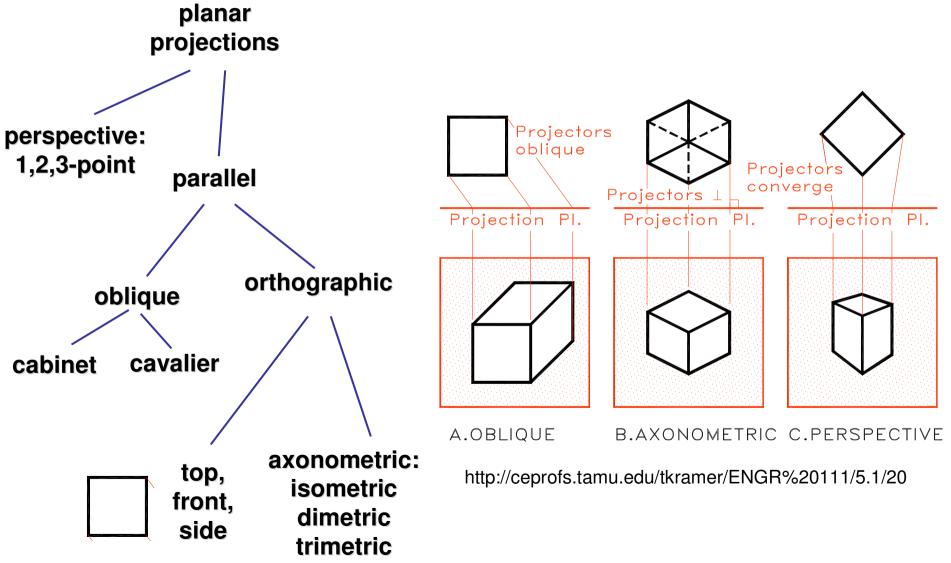
Review: Field-of-View Formulation

- FOV in one direction + aspect ratio (w/h)
 - also set near, far

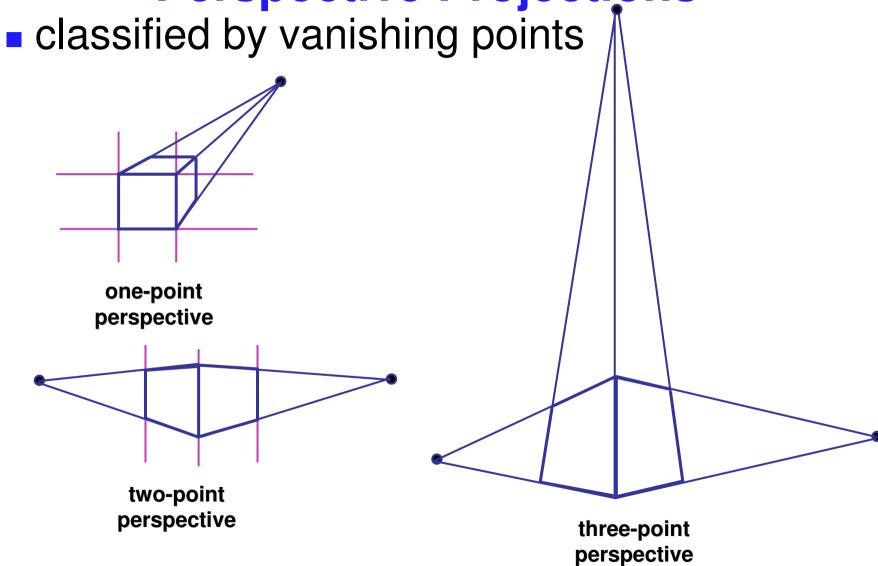


Projection Wrapup

Projection Taxonomy

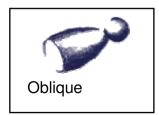


Perspective Projections



Parallel Projection

- projectors are all parallel
 - vs. perspective projectors that converge
 - orthographic: projectors perpendicular to projection plane
 - oblique: projectors not necessarily perpendicular to projection plane

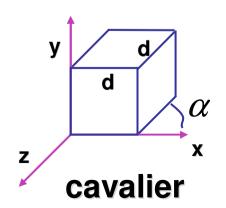


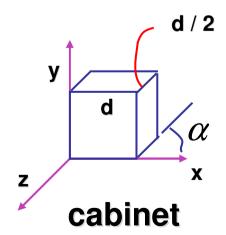
Axonometric Projections

- projectors perpendicular to image plane
- select axis lengths
 - 3 Equal axes 2 Equal axes 0 Equal axes 3 Equal angles 2 Equal angles 0 Equal angles 30° 110° A.ISOMETRIC B.DIMETRIC C.TRIMETRIC

Oblique Projections

- projectors oblique to image plane
- select angle between front and z axis
 - lengths remain constant
- both have true front view
 - cavalier: distance true
 - cabinet: distance half





Demos

- Tuebingen applets from Frank Hanisch
 - http://www.gris.uni-tuebingen.de/projects/grdev/doc/html/etc/ AppletIndex.html#Transformationen

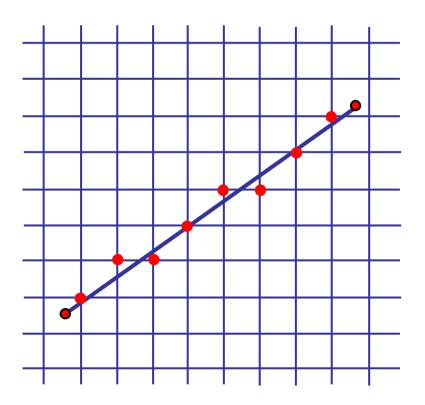
Rasterization

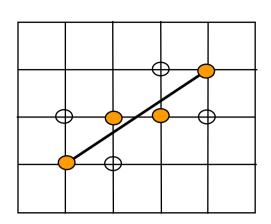
Scan Conversion - Rasterization

- convert continuous rendering primitives into discrete fragments/pixels
 - lines
 - midpoint/Bresenham
 - triangles
 - flood fill
 - scanline
 - implicit formulation
 - interpolation

Scan Conversion

- given vertices in DCS, fill in the pixels
 - start with lines





Basic Line Drawing

$$y = mx + b$$

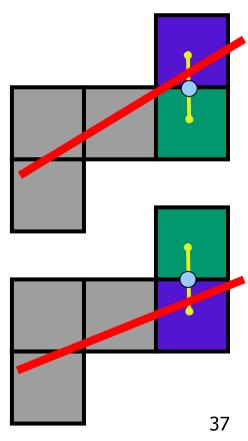
$$y = \frac{(y_1 - y_0)}{(x_1 - x_0)} (x - x_0) + y_0$$

- goals
 - integer coordinates
 - thinnest line with no gaps
 - assume $x_0 < x_1$, slope $0 < \frac{dy}{dx} < 1$
- how can we do this quickly?

```
Line (x_0, y_0, x_1, y_1)
begin
float dx, dy, x, y, slope;
dx \Leftarrow x_1 - x_0;
dy \Leftarrow y_1 - y_0;
slope \Leftarrow \frac{dy}{dx};
y \leftarrow y_0
for x from x_0 to x_1 do
begin
PlotPixel (x, Round (y));
y \Leftarrow y + slope;
end;
end;
```

Midpoint Algorithm

- moving horizontally along x direction
 - draw at current y value, or move up vertically to y+1?
 - check if midpoint between two possible pixel centers above or below line
- candidates
 - top pixel: (x+1,y+1)
 - bottom pixel: (x+1, y)
- midpoint: (x+1, y+.5)
- check if midpoint above or below line
 - below: top pixel
 - above: bottom pixel
- key idea behind Bresenham
 - [demo]



Making It Fast: Reuse Computation

```
midpoint: if f(x+1, y+.5) < 0 then y = y+1</p>
on previous step evaluated f(x-1, y-.5) or f(x-1, y+.05)
• f(x+1, y) = f(x,y) + (y_0-y_1)
• f(x+1, y+1) = f(x,y) + (y_0 - y_1) + (x_1 - x_0)
   y=y0
   d = f(x0+1, y0+.5)
    for (x=x0; x \le x1; x++) {
      draw(x, y);
      if (d<0) then {
       y = y + 1;
       d = d + (x1 - x0) + (y0 - y1)
      } else {
       d = d + (y0 - y1)
```

Making It Fast: Integer Only

```
midpoint: if f(x+1, y+.5) < 0 then y = y+1</p>
on previous step evaluated f(x-1, y-.5) or f(x-1, y+.05)
• f(x+1, y) = f(x,y) + (y_0-y_1)
• f(x+1, y+1) = f(x,y) + (y_0 - y_1) + (x_1 - x_0)
                                          y=y0
   y=y0
                                          2d = 2*(y0-y1)(x0+1) + (x1-
    d = f(x0+1, y0+.5)
                                            x0)(2y0+1) + 2x0y1 - 2x1y0
    for (x=x0; x \le x1; x++) {
                                          for (x=x0; x \le x1; x++) {
      draw(x, y);
                                            draw(x, y);
      if (d<0) then {
                                            if (d<0) then {
        y = y + 1;
                                              v = v + 1;
        d = d + (x1 - x0) + (y0 - y1)
                                              d = d + 2(x1 - x0) + 2(y0 - y1)
      } else {
                                            } else {
       d = d + (y0 - y1)
                                              d = d + 2(y0 - y1)
                                                                          39
```

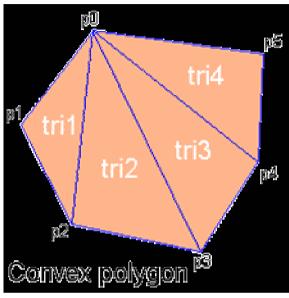
Rasterizing Polygons/Triangles

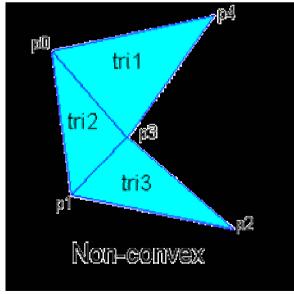
- basic surface representation in rendering
- why?
 - lowest common denominator
 - can approximate any surface with arbitrary accuracy
 - all polygons can be broken up into triangles
 - guaranteed to be:
 - planar
 - triangles convex
 - simple to render
 - can implement in hardware

Triangulation

convex polygons easily triangulated

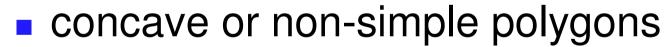
concave polygons present a challenge



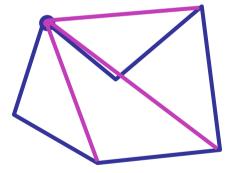


OpenGL Triangulation

- simple convex polygons
 - break into triangles, trivial
 - glBegin(GL_POLYGON) ... glEnd()



- break into triangles, more effort
- gluNewTess(), gluTessCallback(), ...



Problem

input: closed 2D polygon

problem: fill its interior with specified color on

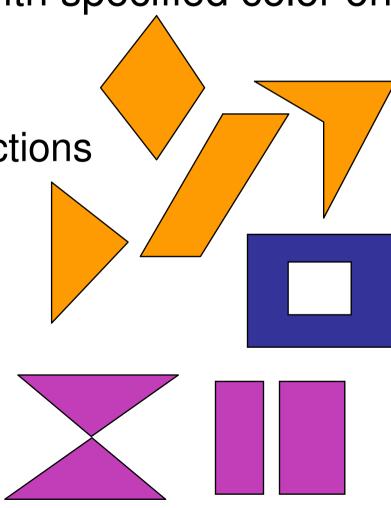
graphics display

assumptions

simple - no self intersections

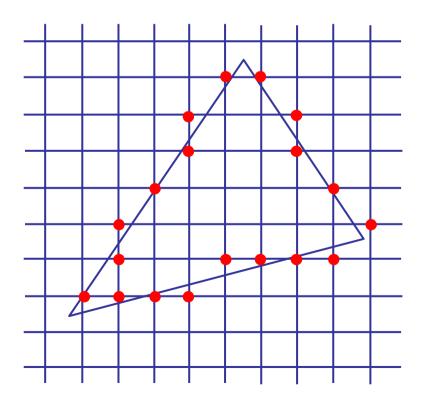
simply connected

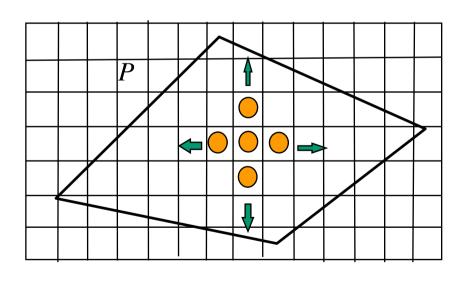
- solutions
 - flood fill
 - edge walking



Flood Fill

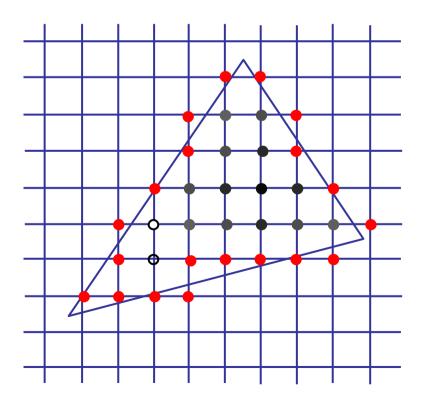
- simple algorithm
 - draw edges of polygon
 - use flood-fill to draw interior





Flood Fill

- start with seed point
 - recursively set all neighbors until boundary is hit



Flood Fill

- draw edges
- run:

```
FloodFill (Polygon P , int x, int y, Color C)

if not ( OnBoundary (x,y,P) or Colored (x,y,C))

begin

PlotPixel (x,y,C);

FloodFill (P,x+1,y,C);

FloodFill (P,x,y+1,C);

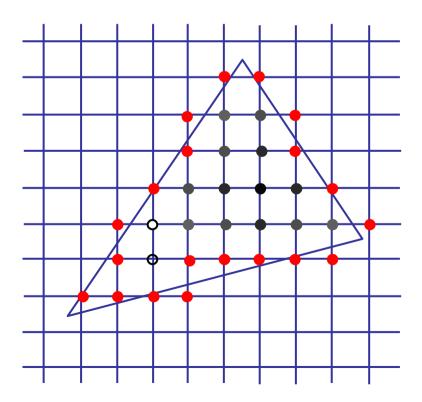
FloodFill (P,x,y-1,C);

end;
```

drawbacks?

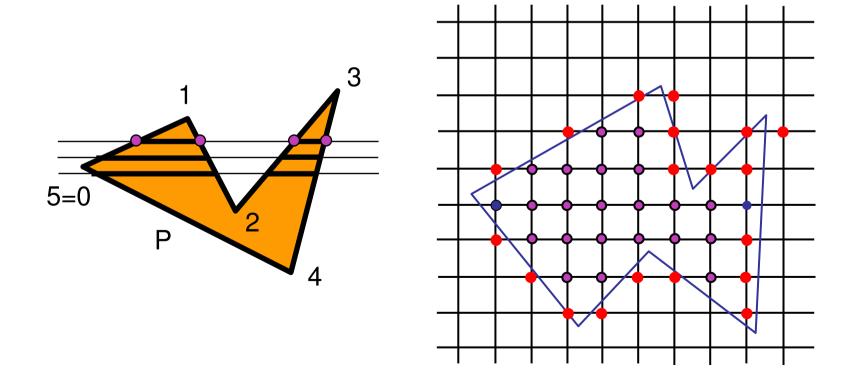
Flood Fill Drawbacks

- pixels visited up to 4 times to check if already set
- need per-pixel flag indicating if set already
 - must clear for every polygon!



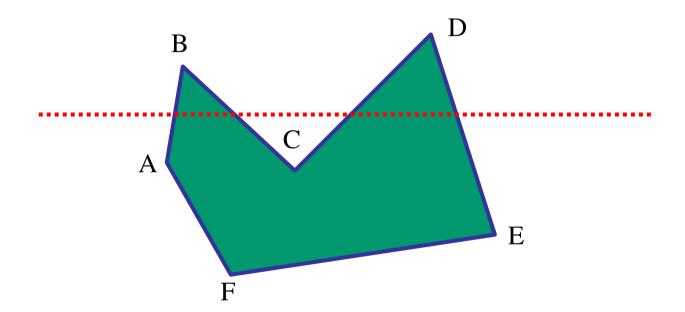
Scanline Algorithms

- scanline: a line of pixels in an image
 - set pixels inside polygon boundary along horizontal lines one pixel apart vertically



General Polygon Rasterization

how do we know whether given pixel on scanline is inside or outside polygon?



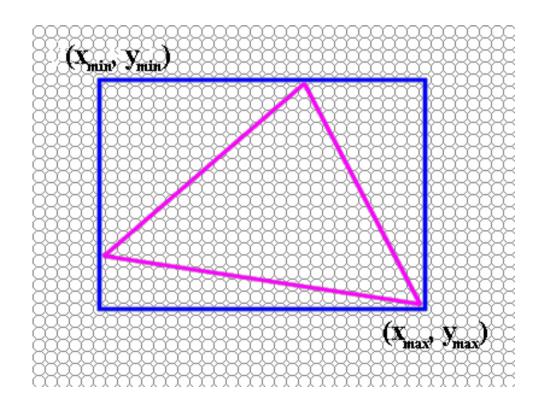
General Polygon Rasterization

idea: use a parity test

```
for each scanline
  edgeCnt = 0;
  for each pixel on scanline (1 to r)
    if (oldpixel->newpixel crosses edge)
       edgeCnt ++;
    // draw the pixel if edgeCnt odd
    if (edgeCnt % 2)
       setPixel(pixel);
```

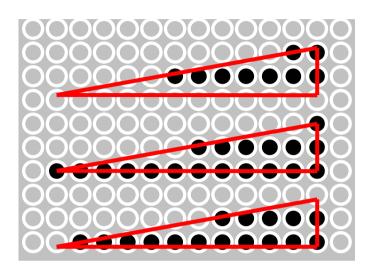
Making It Fast: Bounding Box

- smaller set of candidate pixels
 - loop over xmin, xmax and ymin,ymax instead of all x, all y

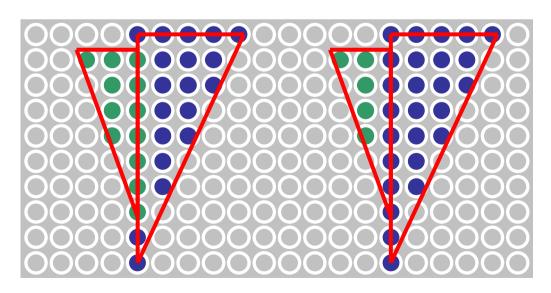


Triangle Rasterization Issues

moving slivers



shared edge ordering



Triangle Rasterization Issues

- exactly which pixels should be lit?
 - pixels with centers inside triangle edges
- what about pixels exactly on edge?
 - draw them: order of triangles matters (it shouldn't)
 - don't draw them: gaps possible between triangles
- need a consistent (if arbitrary) rule
 - example: draw pixels on left or top edge, but not on right or bottom edge
 - example: check if triangle on same side of edge as offscreen point

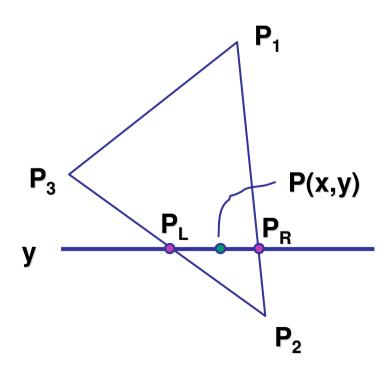
Interpolation

Interpolation During Scan Conversion

- drawing pixels in polygon requires interpolating values between vertices
 - z values
 - r,g,b colour components
 - use for Gouraud shading
 - u,v texture coordinates
 - N_x, N_y, N_z surface normals
- equivalent methods (for triangles)
 - bilinear interpolation
 - barycentric coordinates

Bilinear Interpolation

- interpolate quantity along L and R edges, as a function of y
 - then interpolate quantity as a function of x



Barycentric Coordinates

weighted combination of vertices

- smooth mixing
- speedup
 - compute once per triangle

$$\beta = 0$$

$$(0,0,1)$$

$$\beta = 0.5$$

 $P = \alpha \cdot P_1 + \beta \cdot P_2 + \gamma \cdot P_3$ $\alpha + \beta + \gamma = 1$ $0 \le \alpha, \beta, \gamma \le 1 \text{ for points inside triangle}$

"convex combination of points"

(0,1,0)

- non-orthogonal coordinate system
- P₃ is origin
- P₂-P₃, P₁-P₃ are basis vectors

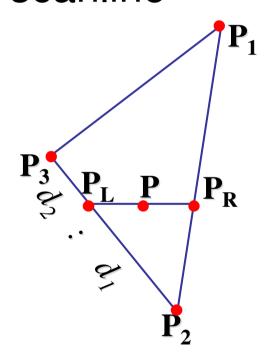
$$\mathbf{P} = \mathbf{P}_{3} + \beta(\mathbf{P}_{2} - \mathbf{P}_{3}) + \gamma(\mathbf{P}_{1} - \mathbf{P}_{3})$$

$$\mathbf{P} = (1 - \beta - \gamma)\mathbf{P}_{3} + \beta(\mathbf{P}_{2}) + \gamma(\mathbf{P}_{1})$$

$$\mathbf{P} = \alpha(\mathbf{P}_{3}) + \beta(\mathbf{P}_{2}) + \gamma(\mathbf{P}_{1})$$

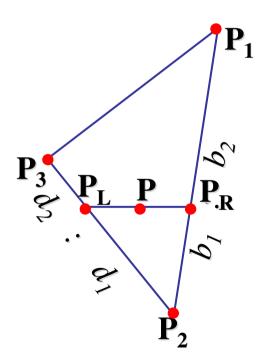
$$P_{3} \qquad P_{3} \qquad P_{4} \qquad P_{5} \qquad$$

from bilinear interpolation of point P on scanline



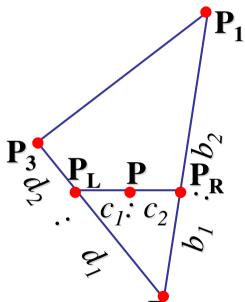
$$\begin{split} P_L &= P_2 + \frac{d_1}{d_1 + d_2} (P_3 - P_2) \\ &= (1 - \frac{d_1}{d_1 + d_2}) P_2 + \frac{d_1}{d_1 + d_2} P_3 = \\ &= \frac{d_2}{d_1 + d_2} P_2 + \frac{d_1}{d_1 + d_2} P_3 \end{split}$$

similarly



$$\begin{split} P_R &= P_2 + \frac{b_1}{b_1 + b_2} (P_1 - P_2) \\ &= (1 - \frac{b_1}{b_1 + b_2}) P_2 + \frac{b_1}{b_1 + b_2} P_1 = \\ &= \frac{b_2}{b_1 + b_2} P_2 + \frac{b_1}{b_1 + b_2} P_1 \end{split}$$

combining



$$P = \frac{c_2}{c_1 + c_2} \cdot P_L + \frac{c_1}{c_1 + c_2} \cdot P_R$$

$$P_L = \frac{d_2}{d_1 + d_2} P_2 + \frac{d_1}{d_1 + d_2} P_3$$

$$P_R = \frac{b_2}{b_1 + b_2} P_2 + \frac{b_1}{b_1 + b_2} P_1$$

gives P₂

$$P = \frac{c_2}{c_1 + c_2} \left(\frac{d_2}{d_1 + d_2} P_2 + \frac{d_1}{d_1 + d_2} P_3 \right) + \frac{c_1}{c_1 + c_2} \left(\frac{b_2}{b_1 + b_2} P_2 + \frac{b_1}{b_1 + b_2} P_1 \right)$$

• thus $P = a_1 \cdot P_1 + a_2 \cdot P_2 + a_3 \cdot P_3$ with

$$\alpha = \frac{c_1}{c_1 + c_2} \frac{b_1}{b_1 + b_2}$$

$$\beta = \frac{c_2}{c_1 + c_2} \frac{d_2}{d_1 + d_2} + \frac{c_1}{c_1 + c_2} \frac{b_2}{b_1 + b_2}$$

$$\gamma = \frac{c_2}{c_1 + c_2} \frac{d_1}{d_1 + d_2}$$

can verify barycentric properties

$$\alpha + \beta + \gamma = 1,$$
 $0 \le \alpha, \beta, \gamma \le 1$

2D triangle area

2D triangle area
$$\alpha = A_{P_3} / A$$

$$\beta = A_{P_2} / A$$

$$\gamma = A_{P_1} / A$$

$$A = +A_{P_3} + A_{P_2} + A_{P_1}$$

$$A_{P_1} (\alpha, \beta, \gamma) = A_{P_2} / A_{P_3}$$

$$A_{P_2} (\alpha, \beta, \gamma) = A_{P_3} / A_{P_3}$$

$$A_{P_1} (\alpha, \beta, \gamma) = A_{P_2} / A_{P_3}$$

$$A_{P_2} (\alpha, \beta, \gamma) = A_{P_3} / A_{P_3}$$

$$A_{P_1} (\alpha, \beta, \gamma) = A_{P_2} / A_{P_3}$$

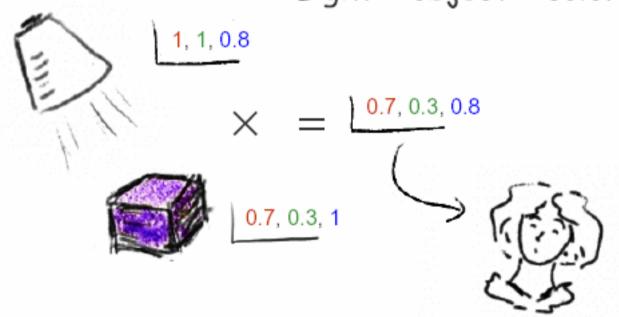
$$A_{P_2} (\alpha, \beta, \gamma) = A_{P_3} / A_{P_3}$$

$$A_{P_3} (\alpha, \beta, \gamma) = A_{P_3} / A_{P_3}$$

Vision/Color

Simple Model of Color

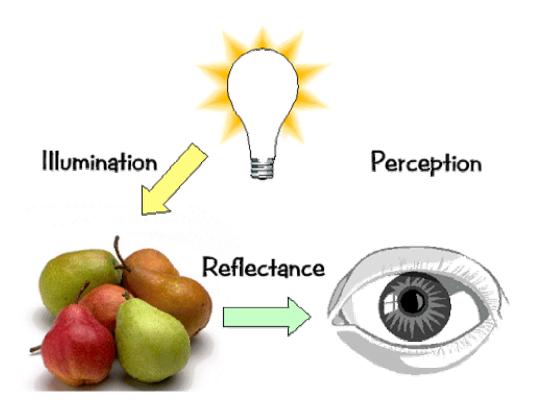
- simple model based on RGB triples
- component-wise multiplication of colors
 - (a0,a1,a2) * (b0,b1,b2) = (a0*b0, a1*b1, a2*b2) $Light \times object = color$



why does this work?

Basics Of Color

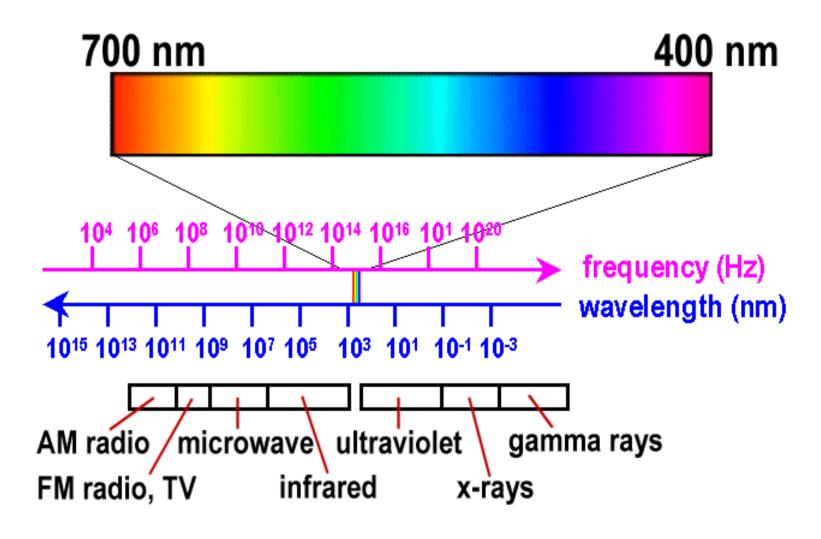
elements of color:



Basics of Color

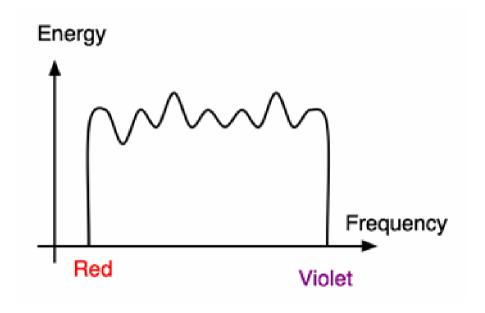
- physics
 - illumination
 - electromagnetic spectra
 - reflection
 - material properties
 - surface geometry and microgeometry (i.e., polished versus matte versus brushed)
- perception
 - physiology and neurophysiology
 - perceptual psychology

Electromagnetic Spectrum

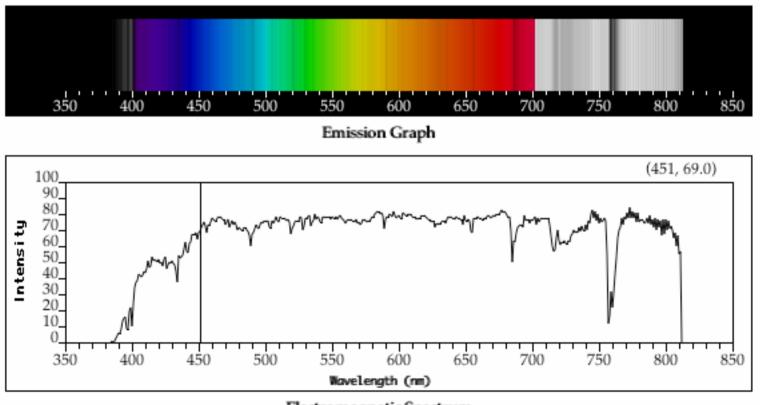


White Light

sun or light bulbs emit all frequencies within the visible range to produce what we perceive as the "white light"



Sunlight Spectrum

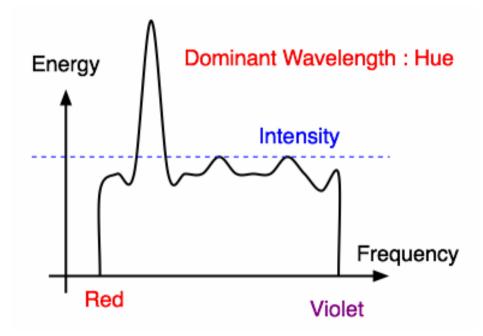


White Light and Color

- when white light is incident upon an object, some frequencies are reflected and some are absorbed by the object
- combination of frequencies present in the reflected light that determinses what we perceive as the color of the object

Hue

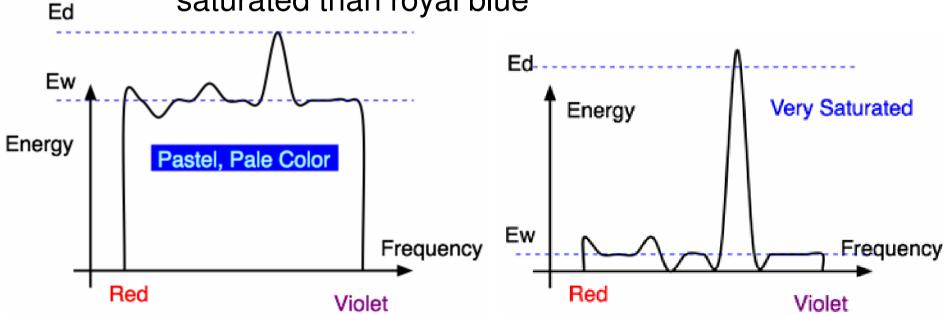
 hue (or simply, "color") is dominant wavelength/frequency



 integration of energy for all visible wavelengths is proportional to intensity of color

Saturation or Purity of Light

- how washed out or how pure the color of the light appears
 - contribution of dominant light vs. other frequencies producing white light
 - saturation: how far is color from grey
 - pink is less saturated than red, sky blue is less saturated than royal blue



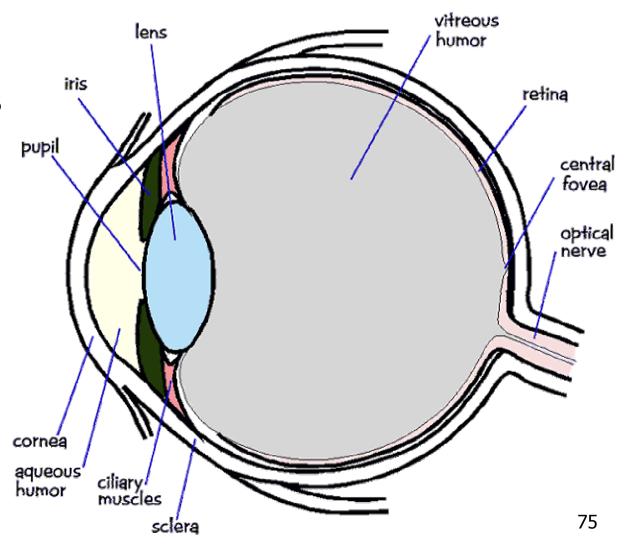
Intensity vs. Brightness

 intensity: measured radiant energy emitted per unit of time, per unit solid angle, and per unit projected area of the source (related to the luminance of the source)

- lightness/brightness : perceived intensity of light
 - nonlinear

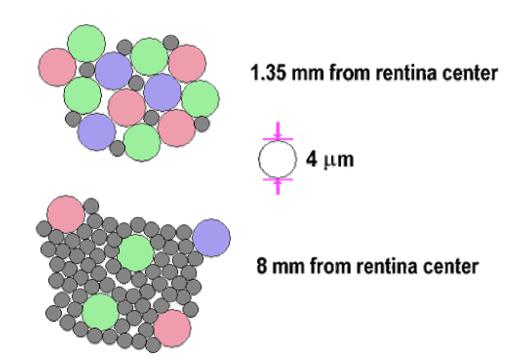
Physiology of Vision

- the retina
 - rods
 - b/w, edges
 - cones
 - color!



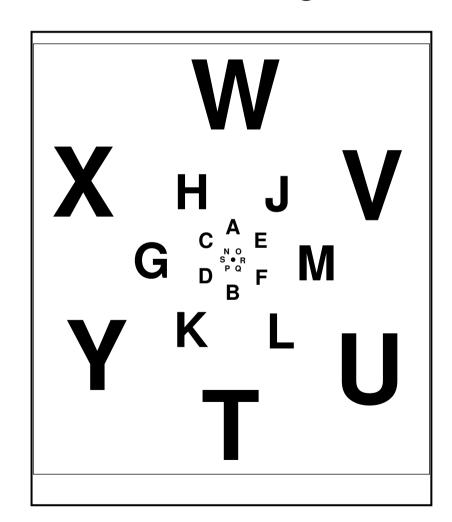
Physiology of Vision

- center of retina is densely packed region called the *fovea*.
 - cones much denser here than the periphery



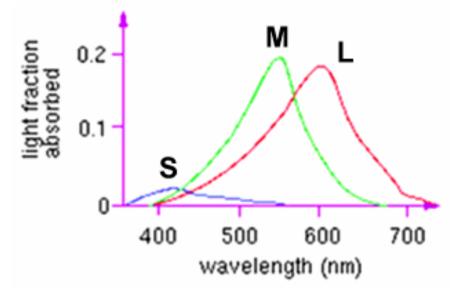
Foveal Vision

hold out your thumb at arm's length



Trichromacy

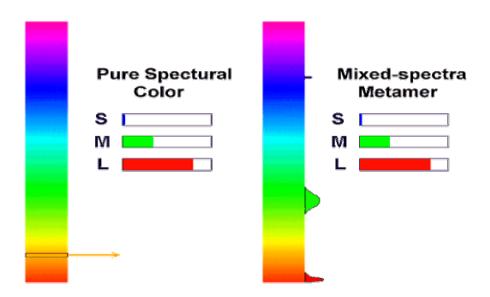
- three types of cones
 - L or R, most sensitive to red light (610 nm)
 - M or G, most sensitive to green light (560 nm)
 - S or B, most sensitive to blue light (430 nm)



color blindness results from missing cone type(s)

Metamers

 a given perceptual sensation of color derives from the stimulus of all three cone types



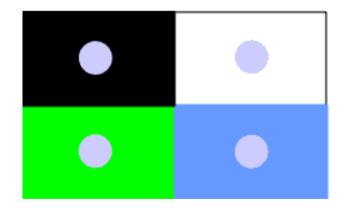
 identical perceptions of color can thus be caused by very different spectra

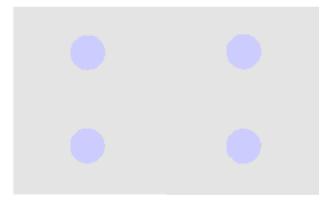
Metamer Demo

http://www.cs.brown.edu/exploratories/freeSoftware/catalogs/color_theory.html

Adaptation, Surrounding Color

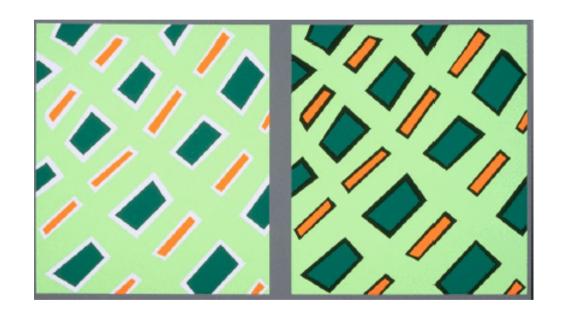
- color perception is also affected by
 - adaptation (move from sunlight to dark room)
 - surrounding color/intensity:
 - simultaneous contrast effect

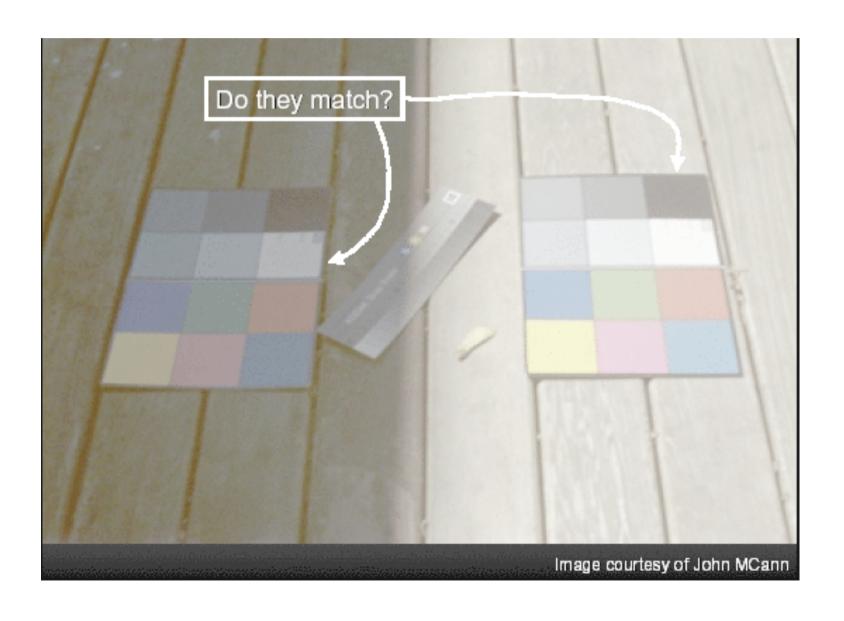


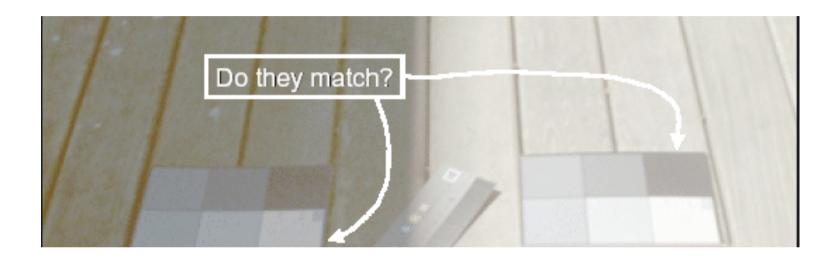


Bezold Effect

impact of outlines







Color Constancy

- automatic "white balance" from change in illumination
- vast amount of processing behind the scenes!
- colorimetry vs.perception

Stroop Effect

- red
- blue
- orange
- purple
- green

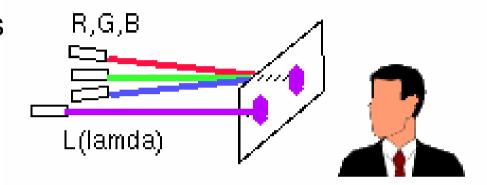
Stroop Effect

- blue
- green
- purple
- red
- orange

interplay between cognition and perception

Color Spaces

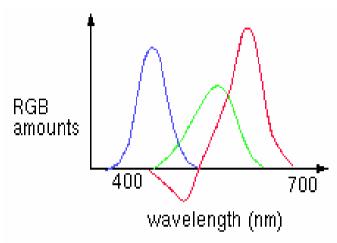
three types of cones suggests color is a 3D quantity. how to define 3D color space?



- idea: perceptually based measurement
 - shine given wavelength (λ) on a screen
 - user must control three pure lights producing three other wavelengths (say R=700nm, G=546nm, and B=436nm)
 - adjust intensity of RGB until colors are identical
 - this works because of metamers!

Negative Lobes

exact target match with phosphors not possible



- some red had to be added to target color to permit exact match using "knobs" on RGB intensity output of CRT
- equivalently theoretically to removing red from CRT output
- figure shows that red phosphor must remove some cyan for perfect match
- CRT phosphors cannot remove cyan, so 500 nm cannot be generated

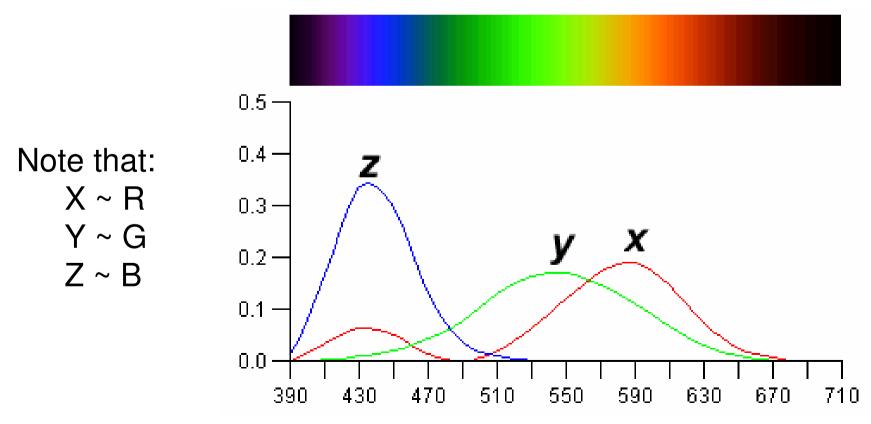
Negative Lobes

can't generate all other wavelenths with any set of three positive monochromatic lights!

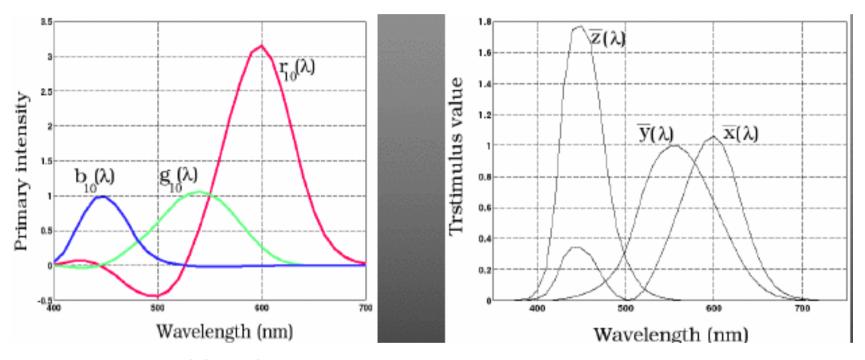
 solution: convert to new synthetic coordinate system to make the job easy

CIE Color Space

CIE defined three "imaginary" lights X, Y, and Z, any wavelength λ can be matched perceptually by positive combinations



Measured vs. CIE Color Spaces



measured basis

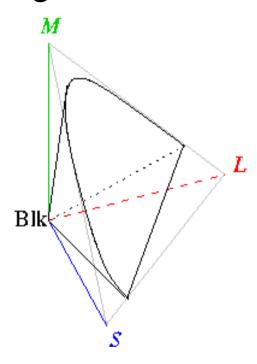
- monochromatic lights
- physical observations
- negative lobes

transformed basis

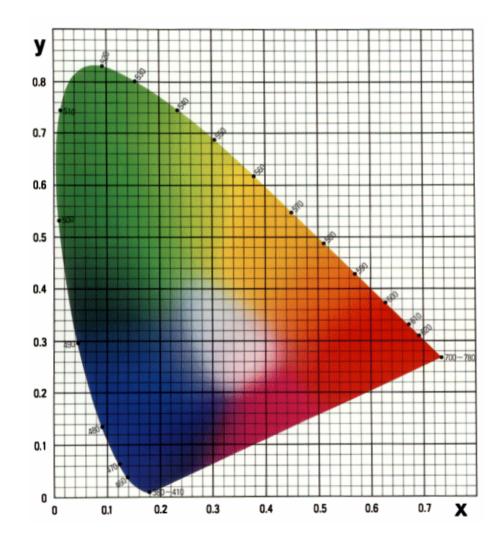
- "imaginary" lights
- all positive, unit area
- Y is luminance, no hue
- X,Z no luminance

CIE Gamut and Chromaticity Diagram

3D gamut



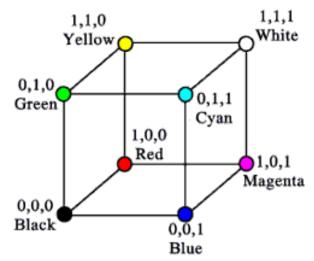
- chromaticity diagram
 - hue only, no intensity

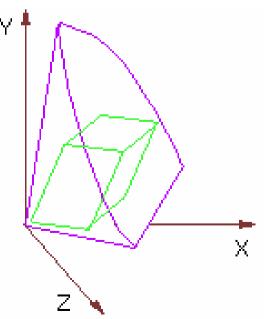


RGB Color Space (Color Cube)

- define colors with (r, g, b) amounts of red, green, and blue
 - used by OpenGL
 - hardware-centric

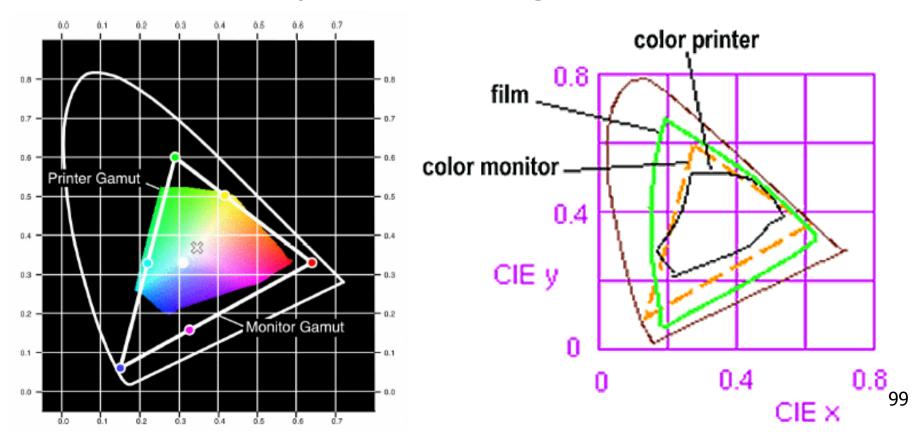
- RGB color cube sits within CIE color space
 - subset of perceivable colors
 - scale, rotate, shear cube



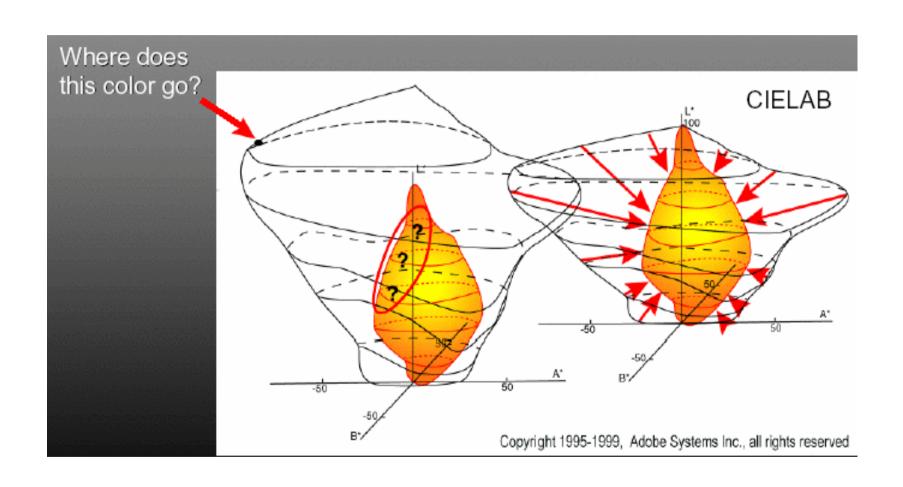


Device Color Gamuts

- use CIE chromaticity diagram to compare the gamuts of various devices
 - X, Y, and Z are hypothetical light sources, no device can produce entire gamut

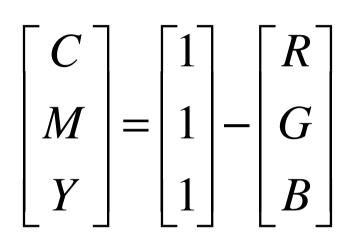


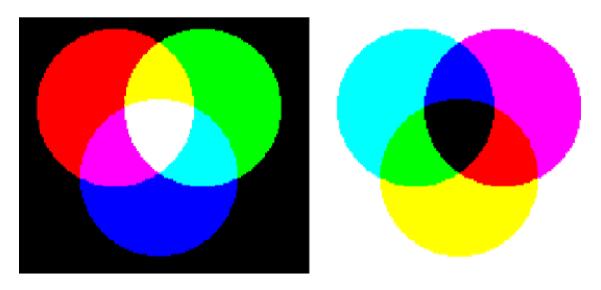
Gamut Mapping



Additive vs. Subtractive Colors

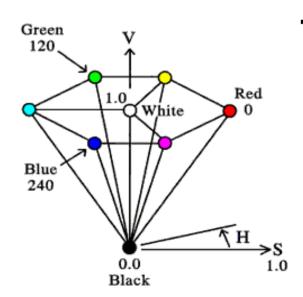
- additive: light
 - monitors, LCDs
 - RGB model
- subtractive: pigment
 - printers
 - CMY model

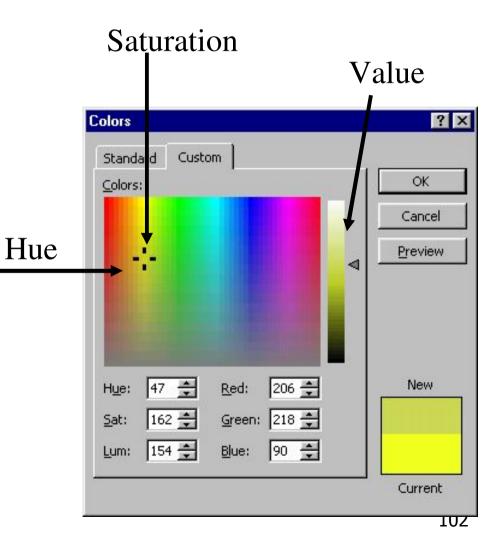




HSV Color Space

- more intuitive color space for people
 - H = Hue
 - S = Saturation
 - V = Value
 - or brightness B
 - or intensity I
 - or lightness L





HSI Color Space

- conversion from RGB
 - not expressible in matrix

$$I = \frac{R+G+B}{3} \qquad S = 1 - \frac{\min(R+G+B)}{I}$$

$$H = \cos^{-1} \left[\frac{\frac{1}{2} [(R-G) + (R-B)]}{\sqrt{(R-G)^2 + (R-B)(G-B)}} \right]$$

YIQ Color Space

- color model used for color TV
 - Y is luminance (same as CIE)

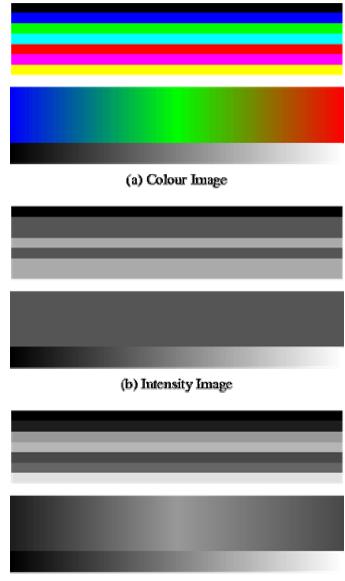
conversion from RGB is linear

$$\begin{bmatrix} Y \\ I \\ Q \end{bmatrix} = \begin{bmatrix} 0.30 & 0.59 & 0.11 \\ 0.60 & -0.28 & -0.32 \\ 0.21 & -0.52 & 0.31 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

 green is much lighter than red, and red lighter than blue

Luminance vs. Intensity

- luminance
 - Y of YIQ
 - 0.299R + 0.587G + 0.114B
- intensity/brightness
 - I/V/B of HSI/HSV/HSB
 - 0.333R + 0.333G + 0.333B



Monitors

- monitors have nonlinear response to input
 - characterize by gamma
 - displayedIntensity = a^{γ} (maxIntensity)
- gamma correction
 - displayedIntensity = $\left(a^{1/\gamma}\right)^{\gamma}$ (maxIntensity)

= a (maxIntensity)

Alpha

- transparency
 - (r,g,b, α)
- fraction we can see through
 - $c = \alpha c_f + (1 \alpha)c_b$
- compositing

Program 2: Terrain Navigation

- make colored terrain
 - 100x100 grid
 - two triangles per grid cell
 - face color varies randomly

Navigating

- two flying modes: absolute and relative
- absolute
 - keyboard keys to increment/decrement
 - x/y/z position of eye, lookat, up vectors
- relative
 - mouse drags
 - incremental wrt current camera position
 - forward/backward motion
 - roll, pitch, and yaw angles

Hints: Viewing

- don't forget to flip y coordinate from mouse
 - window system origin upper left
 - OpenGL origin lower left
- all viewing transformations belong in modelview matrix, not projection matrix
 - project 1 template incorrect with this!

Hint: Incremental Motion

- motion is wrt current camera coords
 - maintaining cumulative angles wrt world coords would be difficult
 - computation in coord system used to draw previous frame is simple
 - OpenGL modelview matrix has the info!
 - but multiplying by new matrix gives p'=Clp
 - you want to do p'=ICp
 - trick:
 - dump out modelview matrix
 - wipe the stack with glldentity
 - apply incremental update matrix
 - apply current camera coord matrix

Demo