
1

Page 1

University of British Columbia
CPSC 314 Computer Graphics

May-June 2005

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005

Rasterization, Interpolation, Vision/Color

Week 2, Thu May 19

�

News

� reminder: extra lab coverage with TAs
� 12-2 Mondays, Wednesdays
� for rest of term
� just for answering questions, no presentations

� signup sheet for P1 demo time
� Friday 12-5

�

Reading: Today

� FCG Section 2.11 Triangles (Barycentric
Coordinates) p 42-46

� FCG Chap 3 Raster Algorithms, p 49-65
� except 3.8

� FCG Chap 17 Human Vision, p 293-298
� FCG Chap 18 Color, p 301-311

� until Section 18.9 Tone Mapping

�

FCG Errata

� p 54
� triangle at bottom of figure shouldn’t have

black outline
� p 63

� The test if numbers a [x] and b [y] have the
same sign can be implemented as the test
ab [xy] > 0.

�

Reading: Next Time

� FCG Chap 8, Surface Shading, p 141-150
� RB Chap Lighting

Clarification: Arbitrary Rotation

� problem:
� given two orthonormal coordinate systems XYZ and UVW
� find transformation from XYZ to UVW

� answer:
� transformation matrix R whose columns are U,V,W:

R =
ux vx wx

uy vy wy

uz vz wz

�

�

�
�
�

�

�

�
�
�

Y Z

X

W

V

U

2

Page 2

�

Review: Projective Rendering Pipeline

OCS - object/model coordinate system

WCS - world coordinate system

VCS - viewing/camera/eye coordinate
system

CCS - clipping coordinate system

NDCS - normalized device coordinate
system

DCS - device/display/screen coordinate
system

OCSOCS O2WO2W VCSVCS

CCSCCS

NDCSNDCS

DCSDCS

modelingmodeling
transformationtransformation

viewingviewing
transformationtransformation

projectionprojection
transformationtransformation

viewportviewport
transformationtransformation

perspectiveperspective
dividedivide

object world viewing

device

normalized
device

clipping

W2VW2V V2CV2C

N2DN2D

C2NC2N

WCSWCS

�

Review: Camera Motion

� rotate/translate/scale difficult to control
� arbitrary viewing position

� eye point, gaze/lookat direction, up vector

Peye

Pref

up
view

eye

lookaty

z

x
WCS

�

Review: World to View Coordinates

� translate eye to origin
� rotate view vector (lookat – eye) to w axis
� rotate around w to bring up into vw-plane

y

z

x
WCS

v

u

VCS

Peye
w

Pref

up
view

eye

lookat

�
�
�
�

�

�

�
�
�
�

�

�

•−
•−
•−

=

1000

2 ew
ev
eu

M
zyx

zyx

zyx

www
vvv

uuu

vw

�	

Correction: Moving Camera or World?

� two equivalent operations
� move camera one way vs. move world other way

� example
� initial OpenGL camera: at origin, looking along -z axis
� create a unit square parallel to camera at z = -10
� translate in z by 3 possible in two ways

� camera moves to z = -3
� Note OpenGL models viewing in left-hand coordinates

� camera stays put, but world moves to -7

� resulting image same either way
� possible difference: are lights specified in world or view

coordinates?

��

Correction: World vs. Camera
Coordinates

WW

aa = = (1,1)(1,1)WW

aa

bb = = (1,1)(1,1)C1 C1 = (= (5,35,3))WW

cc = = (1,1)(1,1)C2C2= = (1,3)(1,3)C1C1 = (= (5,55,5))WW

C1C1

bb

C2C2
cc

��

Review: Graphics Cameras

� real pinhole camera: image inverted

imageimage
planeplane

eyeeye
pointpoint

� computer graphics camera: convenient equivalent

imageimage
planeplane

eyeeye
pointpoint

center ofcenter of
projectionprojection

3

Page 3

��

Review: Basic Perspective Projection

similar trianglessimilar triangles →=
z
y

d
y'

z
dy

y
⋅='

zz

P(x,y,z)P(x,y,z)

P(P(x’x’,,yy’,z’)’,z’)

z’=z’=dd

yy

z
dx

x
⋅=' dz ='

�
�
�

�

�

�
�
�

�

�

0100
0100
0010
0001

d
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

d

dz
y

dz
x

/

/

�
�
�

�

�

�
�
�

�

�

dz
z
y
x

/

homogeneoushomogeneous
coordscoords

��

Correction: Perspective Projection

� desired result for a point [x, y, z, 1]T projected
onto the view plane:

� what could a matrix look like to do this?

dz
dz

y
z
dy

y
dz

x
z
dx

x

z
y

d
y

z
x

d
x

==⋅==⋅=

==

',','

'
,

'

��

Correction: Simple Perspective Projection
Matrix

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

=

�
�
�
�

�

�

�
�
�
�

�

�

10100
0100
0010
0001

/
z

y

x

ddz

z

y

x
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

1

/

/

d
dz

y
dz

x

is homogenized version of

where w = z/d
�
�
�
�

�

�

�
�
�
�

�

�

dz

z

y

x

/

�

Review: Orthographic Cameras

� center of projection at infinity
� no perspective convergence
� just throw away z values

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

=

�
�
�
�

�

�

�
�
�
�

�

�

11000

0000
0010

0001

1

z
y

x

z
y

x

p

p

p

��

Review: Transforming View Volumes

x

z

NDCS y

(-1,-1,-1)

(1,1,1)

orthographic view volumeorthographic view volume

x

z

VCS

y
x=left

y=top

x=right

z=-far
z=-neary=bottom

perspective view volumeperspective view volume

x=left

x=right

y=top

y=bottom z=-near z=-farx
VCS

y

��

Review: Ortho to NDC Derivation

� scale, translate, reflect for new coord sys

x

z

VCS

y
x=left

y=top

x=right

z=-far
z=-neary=bottom

x

z

NDCS

y

(-1,-1,-1)

(1,1,1)

P

nearfar
nearfar

nearfar

bottop
bottop

bottop

leftright
leftright

leftright

P

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

−
+

−
−
−

−
+−

−

−
+−

−

=

1000

2
00

0
2

0

00
2

'

4

Page 4

��

Review: NDC to Viewport Transformation

(-1,-1)

(1,1)(1,1)

(0,0)(0,0)

(w,h)(w,h)

NDCSNDCS DCSDCS

2
)1(+= NDCS

DCS

x
wx

2
)1(+= NDCS

DCS

y
hy

2
)1(+= NDCS

DCS

z
z

glViewport(x,y,a,b);
defaultdefault::

aa

bb

xx

yy

glViewport(0,0,w,h);

OpenGLOpenGL

� 2D scaling and translation

�	

Clarification: N2V Transformation

� general formulation
� translate by

� x offset, width/2
� y offset, height/2

� scale by width/height
� reflect in y for upper vs. lower left origin
� FCG includes additional translation for pixel

centers at (.5, .5) instead of (0,0)
� feel free to ignore this

��

Review: Perspective Normalization

� perspective viewing frustum transformed to
cube

� orthographic rendering of cube produces same
image as perspective rendering of original
frustum

��

Review: Perspective Normalization

� distort such that orthographic projection of
distorted objects is desired persp projection
� separate division from standard matrix

multiplies
� clip after warp, before divide
� division: normalization

CCSCCS
NDCSNDCS

alter walter w / w/ w

VCSVCS
projectionprojection

transformationtransformation

viewing normalized
device

clipping

perspectiveperspective
divisiondivision

��

Review: Coordinate Systems

http://www.btinternet.com/~danbgs/perspective/ ��

Review: Perspective Derivation

x

z

NDCS

y

(-1,-1,-1)

(1,1,1)x=left

x=right

y=top

y=bottom z=-near z=-farx

VCS

y

z

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

−
−

−
−
+−

−
+

−

−
+

−

0100

2)(
00

0
2

0

00
2

nf
fn

nf
nf

bt
bt

bt
n

lr
lr

lr
n

5

Page 5

��

Review: Field-of-View Formulation

� FOV in one direction + aspect ratio (w/h)
� also set near, far

--zz

xx

FrustumFrustum

z=z=--nn z=z=--ff

αααααααα

�

Projection Wrapup

��

Projection Taxonomy
planarplanar

projectionsprojections

perspective:perspective:
1,2,31,2,3--pointpoint parallelparallel

obliqueoblique orthographicorthographic

cabinetcabinet cavaliercavalier

top,top,
front,front,
sideside

axonometric:axonometric:
isometricisometric
dimetricdimetric
trimetrictrimetric

http://ceprofs.tamu.edu/tkramer/ENGR%20111/5.1/20

��

Perspective Projections

oneone--pointpoint
perspectiveperspective

twotwo--pointpoint
perspectiveperspective threethree--pointpoint

perspectiveperspective

� classified by vanishing points

Parallel Projection

� projectors are all parallel
� vs. perspective projectors that converge
� orthographic: projectors perpendicular to

projection plane
� oblique: projectors not necessarily

perpendicular to projection plane

ObliqueOrthographic

�	

Axonometric Projections

� projectors perpendicular to image plane
� select axis lengths

http://ceprofs.tamu.edu/tkramer/ENGR%20111/5.1/20

6

Page 6

��

Oblique Projections

xx

yy

zz

α

cavaliercavalier

dd
dd

xx

yy

zz

α

cabinetcabinet

dd

d / 2d / 2

� projectors oblique to image plane
� select angle between front and z axis

� lengths remain constant
� both have true front view

� cavalier: distance true
� cabinet: distance half

��

Demos

� Tuebingen applets from Frank Hanisch
� http://www.gris.uni-tuebingen.de/projects/grdev/doc/html/etc/

AppletIndex.html#Transformationen

��

Rasterization

��

Scan Conversion - Rasterization

� convert continuous rendering primitives into
discrete fragments/pixels
� lines

� midpoint/Bresenham

� triangles
� flood fill
� scanline
� implicit formulation

� interpolation

��

Scan Conversion

� given vertices in DCS, fill in the pixels
� start with lines

10 xx <

; end

; end
;

;))(, (

begin

do to from for

;

;

;

; , , , ,float

begin

) , , , (

10

0

01

01

1100

slopeyy

yx

xxx

yy
dx

dyslope

yydy

xxdx

slopeyxdydx

yxyx

+⇐

⇐

⇐

−⇐
−⇐

RoundPlotPixel

Line
Basic Line Drawing

� assume
� , slope

� how can we do this quickly?

� goals
� integer coordinates
� thinnest line with no gaps

0 < dy
dx <1

00
01

01)(
)(
)(

yxx
xx
yy

y

bmxy

+−
−
−=

+=

7

Page 7

��

Midpoint Algorithm
� moving horizontally along x direction

� draw at current y value, or move up vertically to y+1?
� check if midpoint between two possible pixel centers

above or below line

� candidates
� top pixel: (x+1,y+1)
� bottom pixel: (x+1, y)

� midpoint: (x+1, y+.5)
� check if midpoint above or below line

� below: top pixel
� above: bottom pixel

� key idea behind Bresenham
� [demo] ��

Making It Fast: Reuse Computation
� midpoint: if f(x+1, y+.5) < 0 then y = y+1
� on previous step evaluated f(x-1, y-.5) or f(x-1, y+.05)
� f(x+1, y) = f(x,y) + (y0-y1)
� f(x+1, y+1) = f(x,y) + (y0- y1) + (x1- x0)

y=y0
d = f(x0+1, y0+.5)
for (x=x0; x <= x1; x++) {
draw(x,y);
if (d<0) then {
y = y + 1;
d = d + (x1 -x0) + (y0 -y1)

} else {
d = d + (y0 -y1)

}

��

Making It Fast: Integer Only
� midpoint: if f(x+1, y+.5) < 0 then y = y+1
� on previous step evaluated f(x-1, y-.5) or f(x-1, y+.05)
� f(x+1, y) = f(x,y) + (y0-y1)
� f(x+1, y+1) = f(x,y) + (y0- y1) + (x1- x0)

y=y0
d = f(x0+1, y0+.5)
for (x=x0; x <= x1; x++) {
draw(x,y);
if (d<0) then {
y = y + 1;
d = d + (x1 -x0) + (y0 -y1)

} else {
d = d + (y0 -y1)

}

y=y0
2d = 2*(y0-y1)(x0+1) + (x1-
x0)(2y0+1) + 2x0y1 -2x1y0

for (x=x0; x <= x1; x++) {
draw(x,y);
if (d<0) then {
y = y + 1;
d = d + 2(x1 -x0) + 2(y0 -y1)

} else {
d = d + 2(y0 -y1)

} �	

Rasterizing Polygons/Triangles

� basic surface representation in rendering
� why?

� lowest common denominator
� can approximate any surface with arbitrary accuracy

� all polygons can be broken up into triangles

� guaranteed to be:
� planar
� triangles - convex

� simple to render
� can implement in hardware

��

Triangulation

� convex polygons easily
triangulated

� concave polygons present
a challenge

��

OpenGL Triangulation

� simple convex polygons
� break into triangles, trivial
� glBegin(GL_POLYGON) ... glEnd()

� concave or non-simple polygons
� break into triangles, more effort
� gluNewTess(), gluTessCallback(), ...

8

Page 8

Problem

� input: closed 2D polygon
� problem: fill its interior with specified color on

graphics display
� assumptions

� simple - no self intersections
� simply connected

� solutions
� flood fill
� edge walking

��

P

Flood Fill

� simple algorithm
� draw edges of polygon
� use flood-fill to draw interior

��

Flood Fill

� start with seed point
� recursively set all neighbors until boundary is hit

�

FloodFill (Polygon P , int x, int y, Color C)

if not (OnBoundary (x, y,P) or Colored (x, y,C))
begin

PlotPixel (x, y,C);
FloodFill (P, x + 1, y,C);
FloodFill (P, x, y + 1,C);

FloodFill (P, x, y − 1,C);
FloodFill (P, x − 1, y,C);

end ;

Flood Fill

� draw edges
� run:

� drawbacks?

��

Flood Fill Drawbacks

� pixels visited up to 4 times to check if already set
� need per-pixel flag indicating if set already

� must clear for every polygon!

��

Scanline Algorithms

� scanline: a line of pixels in an image
� set pixels inside polygon boundary along

horizontal lines one pixel apart vertically

1

2

3

4

5=0

P

9

Page 9

��

General Polygon Rasterization

� how do we know whether given pixel on
scanline is inside or outside polygon?

A

B

C

D

E

F

�	

General Polygon Rasterization

� idea: use a parity test

for each scanline
edgeCnt = 0;
for each pixel on scanline (l to r)

if (oldpixel->newpixel crosses edge)
edgeCnt ++;

// draw the pixel if edgeCnt odd
if (edgeCnt % 2)

setPixel(pixel);

Making It Fast: Bounding Box

� smaller set of candidate pixels
� loop over xmin, xmax and ymin,ymax

instead of all x, all y

��

� moving slivers

� shared edge
ordering

Triangle Rasterization Issues

��

Triangle Rasterization Issues

� exactly which pixels should be lit?
� pixels with centers inside triangle edges

� what about pixels exactly on edge?
� draw them: order of triangles matters (it shouldn’t)
� don’t draw them: gaps possible between triangles

� need a consistent (if arbitrary) rule
� example: draw pixels on left or top edge, but not

on right or bottom edge
� example: check if triangle on same side of edge as

offscreen point

��

Interpolation

10

Page 10

��

zyx NNN ,,

Interpolation During Scan Conversion

� drawing pixels in polygon requires
interpolating values between vertices
� z values
� r,g,b colour components

� use for Gouraud shading

� u,v texture coordinates
� surface normals

� equivalent methods (for triangles)
� bilinear interpolation
� barycentric coordinates

�

Bilinear Interpolation

� interpolate quantity along L and R edges,
as a function of y

� then interpolate quantity as a function of x

yy

P(x,y)P(x,y)

PP11

PP22

PP33

PPLL PPRR

��

Barycentric Coordinates

� weighted combination of vertices
� smooth mixing
� speedup

� compute once per triangle

1P

3P

2P

P

((α,β,γα,β,γα,β,γα,β,γα,β,γα,β,γα,β,γα,β,γ) =) =
((1,0,0)1,0,0)

((α,β,γα,β,γα,β,γα,β,γα,β,γα,β,γα,β,γα,β,γ) =) =
((0,1,0)0,1,0)

((α,β,γα,β,γα,β,γα,β,γα,β,γα,β,γα,β,γα,β,γ) =) =
((0,0,1)0,0,1) 5.0=β

1=β

0=β

321 PPPP ⋅+⋅+⋅= γβα

1,,0

1

≤≤
=++

γβα
γβα

““convex combinationconvex combination
of points”of points”

for points inside triangle

��

Deriving Barycentric Coordinates I

� non-orthogonal coordinate system
� P3 is origin
� P2-P3, P1-P3 are basis vectors

1P

3P

2P

P

(1,0,0)(1,0,0)

(0,1,0)(0,1,0)

(0,0,1)(0,0,1)
)()()(

)()()1(

)()(

123

123

31323

PPPP
PPPP

PPPPPP

γβα
γβγβ

γβ

++=
++−−=

−+−+=

��

PP22

PP33

PP11

PPLL PPRRPPdd
22

: d
: d

11

3
21

1
2

21

2

3
21

1
2

21

1

23
21

1
2

)1(

)(

P
dd

d
P

dd
d

P
dd

d
P

dd
d

PP
dd

d
PPL

+
+

+
=

=
+

+
+

−=

−
+

+=

Deriving Barycentric Coordinates II

� from bilinear interpolation of point P on
scanline

	

Deriving Barycentric Coordinates II

� similarly

bb 11
:

b

:

b 22

PP22

PP33

PP11

PPLL PPRRPPdd
22

: d
: d

11

1
21

1
2

21

2

1
21

1
2

21

1

21
21

1
2

)1(

)(

P
bb

b
P

bb
b

P
bb

b
P

bb
b

PP
bb

b
PPR

+
+

+
=

=
+

+
+

−=

−
+

+=

11

Page 11

�

RL P
cc

c
P

cc
c

P ⋅
+

+⋅
+

=
21

1

21

2

bb 11
:

b

:

b 22

PP22

PP33

PP11

PPLL PPRRPPdd
22

: d
: d

11

3
21

1
2

21

2 P
dd

d
P

dd
d

PL +
+

+
=

1
21

1
2

21

2 P
bb

b
P

bb
b

PR +
+

+
=cc11: c: c22

��
�

	

�

�

+
+

++
+��
�

	

�

�

+
+

++
= 1

21

1
2

21

2

21

1
3

21

1
2

21

2

21

2 P
bb

b
P

bb
b

cc
c

P
dd

d
P

dd
d

cc
c

P

Deriving Barycentric Coordinates II

� combining

� gives

�

Deriving Barycentric Coordinates II

� thus with

� can verify barycentric properties

332211 PaPaPaP ⋅+⋅+⋅=

21

1

21

2

21

2

21

1

21

2

21

2

21

1

21

1

dd
d

cc
c

bb
b

cc
c

dd
d

cc
c

bb
b

cc
c

++
=

++
+

++
=

++
=

γ

β

α

1,,0,1 ≤≤=++ γβαγβα

�

Deriving Barycentric Coordinates III

� 2D triangle area

3PA

1P

3P

2P

P

((α,β,γα,β,γα,β,γα,β,γα,β,γα,β,γα,β,γα,β,γ) =) =
((1,0,0)1,0,0)

((α,β,γα,β,γα,β,γα,β,γα,β,γα,β,γα,β,γα,β,γ) =) =
((0,1,0)0,1,0)

((α,β,γα,β,γα,β,γα,β,γα,β,γα,β,γα,β,γα,β,γ) =) =
((0,0,1)0,0,1)

AA

AA

AA

P

P

P

/

/

/

1

2

3

=

=

=

γ
β
α

2PA

1PA
123 PPP AAAA +++=

�

Vision/Color

�

Simple Model of Color

� simple model based on RGB triples
� component-wise multiplication of colors

� (a0,a1,a2) * (b0,b1,b2) = (a0*b0, a1*b1, a2*b2)

� why does this work?

Basics Of Color

� elements of color:

12

Page 12

�

Basics of Color

� physics
� illumination

� electromagnetic spectra
� reflection

� material properties
� surface geometry and microgeometry (i.e.,

polished versus matte versus brushed)
� perception

� physiology and neurophysiology
� perceptual psychology

�

Electromagnetic Spectrum

�

White Light

� sun or light bulbs emit all frequencies within
the visible range to produce what we
perceive as the "white light"

�	

Sunlight Spectrum

��

White Light and Color

� when white light is incident upon an object,
some frequencies are reflected and some are
absorbed by the object

� combination of frequencies present in the
reflected light that determinses what we
perceive as the color of the object

��

Hue
� hue (or simply, "color") is dominant

wavelength/frequency

� integration of energy for all visible wavelengths is
proportional to intensity of color

13

Page 13

��

Saturation or Purity of Light
� how washed out or how pure the color of the

light appears
� contribution of dominant light vs. other

frequencies producing white light
� saturation: how far is color from grey

� pink is less saturated than red, sky blue is less
saturated than royal blue

��

Intensity vs. Brightness

� intensity : measured radiant energy emitted
per unit of time, per unit solid angle, and per
unit projected area of the source (related to
the luminance of the source)

� lightness/brightness : perceived intensity of
light
� nonlinear

��

Physiology of Vision

� the retina
� rods

� b/w, edges

� cones
� color!

�

Physiology of Vision

� center of retina is densely packed region
called the fovea.
� cones much denser here than the periphery

��

Foveal Vision

� hold out your thumb at arm’s length

A

B

C

D

E

FG
H J

K L
MN

P

O

Q
RS

T U

V
W

X

Y
��

Trichromacy

� three types of cones
� L or R, most sensitive to red light (610 nm)
� M or G, most sensitive to green light (560 nm)
� S or B, most sensitive to blue light (430 nm)

� color blindness results from missing cone type(s)

14

Page 14

��

Metamers

� a given perceptual sensation of color derives
from the stimulus of all three cone types

� identical perceptions of color can thus be caused by
very different spectra

�	

Metamer Demo
� http://www.cs.brown.edu/exploratories/freeSoftware/catalogs/color_theory.html

��

Adaptation, Surrounding Color

� color perception is also affected by
� adaptation (move from sunlight to dark room)
� surrounding color/intensity:

� simultaneous contrast effect

��

Bezold Effect

� impact of outlines

��

Color/Lightness Constancy

��

Color/Lightness Constancy

15

Page 15

��

Color/Lightness Constancy

�

Color/Lightness Constancy

��

Color/Lightness Constancy

��

Color/Lightness Constancy

��

Color
Constancy

� automatic “white
balance” from change
in illumination

� vast amount of
processing behind the
scenes!

� colorimetry vs.
perception

�	

Stroop Effect

� red
� blue
� orange
� purple
� green

16

Page 16

��

Stroop Effect

� blue
� green
� purple
� red
� orange

� interplay between cognition and perception

��

Color Spaces

� three types of cones suggests
color is a 3D quantity. how to
define 3D color space?

� idea: perceptually based measurement
� shine given wavelength (λ) on a screen
� user must control three pure lights producing

three other wavelengths (say R=700nm,
G=546nm, and B=436nm)

� adjust intensity of RGB until colors are identical
� this works because of metamers!

��

Negative Lobes

� exact target match with
phosphors not possible

� some red had to be added to target color to permit exact match
using “knobs” on RGB intensity output of CRT

� equivalently theoretically to removing red from CRT output
� figure shows that red phosphor must remove some cyan for

perfect match
� CRT phosphors cannot remove cyan, so 500 nm cannot be

generated

��

Negative Lobes

� can’t generate all other wavelenths with any
set of three positive monochromatic lights!

� solution: convert to new synthetic coordinate
system to make the job easy

��

CIE Color Space

� CIE defined three “imaginary” lights X, Y,
and Z, any wavelength λ can be matched
perceptually by positive combinations

Note that:
X ~ R
Y ~ G
Z ~ B

�

Measured vs. CIE Color Spaces

� measured basis
� monochromatic lights
� physical observations
� negative lobes

� transformed basis
� “imaginary” lights
� all positive, unit area
� Y is luminance, no hue
� X,Z no luminance

17

Page 17

��

CIE Gamut and Chromaticity Diagram
� 3D gamut

� chromaticity diagram
� hue only, no intensity

��

RGB Color Space (Color Cube)

� define colors with (r, g, b)
amounts of red, green, and
blue
� used by OpenGL
� hardware-centric

� RGB color cube sits within
CIE color space
� subset of perceivable colors
� scale, rotate, shear cube

��

Device Color Gamuts
� use CIE chromaticity diagram to compare the

gamuts of various devices
� X, Y, and Z are hypothetical light sources, no

device can produce entire gamut

�		

Gamut Mapping

�	�

Additive vs. Subtractive Colors

� additive: light
� monitors, LCDs
� RGB model

� subtractive: pigment
� printers
� CMY model

�
�
�

�

�

�
�
�

�

�

−
�
�
�

�

�

�
�
�

�

�

=
�
�
�

�

�

�
�
�

�

�

B

G

R

Y

M

C

1
1
1

�	�

HSV Color Space
� more intuitive color space for people

� H = Hue
� S = Saturation
� V = Value

� or brightness B
� or intensity I
� or lightness L

Value
Saturation

Hue

18

Page 18

�	�

HSI Color Space

� conversion from RGB
� not expressible in matrix

3
BGR

I
++=

I
BGR

S
)min(

1
++−=

[]

�
�
�

�

�

�
�
�

�

�

−−+−

−+−
= −

))(()(

)()(
2
1

cos
2

1

BGBRGR

BRGR
H

�	�

YIQ Color Space

� color model used for color TV
� Y is luminance (same as CIE)
� I & Q are color (not same I as HSI!)
� using Y backwards compatible for B/W TVs
� conversion from RGB is linear

� green is much lighter than red, and red lighter
than blue

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

−
−−=

�
�
�

�

�

�
�
�

�

�

B

G
R

Q

I
Y

31.052.021.0

32.028.060.0
11.059.030.0

Q

I

�	�

Luminance vs. Intensity

� luminance
� Y of YIQ
� 0.299R + 0.587G + 0.114B

� intensity/brightness
� I/V/B of HSI/HSV/HSB
� 0.333R + 0.333G + 0.333B

www.csse.uwa.edu.au/~robyn/Visioncourse/colour/lecture/node5.html
�	

Monitors

� monitors have nonlinear response to input
� characterize by gamma

� displayedIntensity = aγγγγ (maxIntensity)

� gamma correction
� displayedIntensity = (maxIntensity)

= a (maxIntensity)

γγ
�
�
	

�
� /1a

�	�

Alpha

� transparency
� (r,g,b,α)

� fraction we can see through
� c = αcf + (1-α)cb

� compositing

�	�

Program 2: Terrain Navigation

� make colored terrain
� 100x100 grid

� two triangles per grid cell

� face color varies randomly

19

Page 19

�	�

Navigating

� two flying modes: absolute and relative
� absolute

� keyboard keys to increment/decrement
� x/y/z position of eye, lookat, up vectors

� relative
� mouse drags
� incremental wrt current camera position
� forward/backward motion
� roll, pitch, and yaw angles

��	

Hints: Viewing

� don’t forget to flip y coordinate from mouse
� window system origin upper left
� OpenGL origin lower left

� all viewing transformations belong in
modelview matrix, not projection matrix
� project 1 template incorrect with this!

���

Hint: Incremental Motion

� motion is wrt current camera coords
� maintaining cumulative angles wrt world coords

would be difficult
� computation in coord system used to draw previous

frame is simple
� OpenGL modelview matrix has the info!

� but multiplying by new matrix gives p’=CIp
� you want to do p’=ICp
� trick:

� dump out modelview matrix
� wipe the stack with glIdentity
� apply incremental update matrix
� apply current camera coord matrix

���

Demo

