University of British Columbia
CPSC 314 Computer Graphics
May-June 2005

Tamara Munzner
Viewing, Projections l/li

Week 2, Tue May 17

hitp://www.ugrad.cs.ubc.ca/~cs314/Vmay2005

News

= extra lab coverage with TAs
= 12-2 Mondays, Wednesdays
= for rest of term
= just for answering questions, no presentations

Reading: Today

FCG Chapter 6

FCG Section 5.3.1

RB rest of Chap Viewing

RB rest of App Homogeneous Coords

Reading: Next Time

FCG Section 2.11

FCG Chap 3
= except 3.8

FCG Chap 17 Human Vision (pp 293-298)

FCG Chap 18 Color pp 301-311
= until Section 18.9 Tone Mapping

Textbook Errata

m list at http://www.cs.utah.edu/~shirley/fcg/errata
= last matrix, last column denominators
« D-a-> A-a
« E-b ->B-b
=« F-c > C-c

= "Sometimes we will want to take the inverse of
P" should be "M _p" instead of "P"

Vector-Vector Subtraction

s Subtract: vector - vector = vector

(3,2)—(6,4) = (—3,-2)

u+(—v)

argument reversal

U3~ V3

u —v

U, —Vv,

(2,5.1)—(3,1,—1) = (-1,4]2)

Review: 2D Rotation

X" =x cos(0) - y sin(0)
(x', y') y'=x sin(6) + y cos(6)

e

X y)

= counterclockwise, RHS

Review: 2D Rotation From Trig Identities

X =71 COs ()

y =1 sin (0)
x'=r1cos (¢ +
y' =1 sin (¢ + 0)

| o (XL Yy)
Trig Identity...
(X y) X" =1 cos(d) cos(0) —r sin(¢) sin(O)
’ y' = r sin() cos(0) + r cos(0) sin()
0 bstitute...
(I) X "=x cos(09) - y sin(0)

y "=xsin(0) + y cos(9)

Review: 2D Rotation: Another Derivation

xX'=xcosf@—ysinf

y'=xsmméf+ ycosb

= shear along x axis
= push points to right in proportion to height

y‘.

Review: Shear, Reflection

—_—

s reflect across x axis
= Mirror

y‘.
S8 7 |
L 1 X
T { ’
° . ’
e X

Review: 2D Transformations

matrix multiplication matrix multiplication

X' a 0| x x| cos(@) —sin(@)] x

Vsl Blle el
—— = ~ o
scaling matrix rotation matrix

vector addition

!

(x',y’)
X a . X+a . X
[t NEBE MR

a blx B X
C d__y___y'_
H_I

translation multiplication matrix ?? 1

Review: Linear Transformations

s linear transformations are combinations of

= Shear - 1 b_
= scale X a X

= rotate y| |c diy
= reflect) -

= properties of linear transformations
« satisifes T(sx+ty) = s T(X) + t T(y)

= 0Origin maps to origin

« lines map to lines

= parallel lines remain parallel
= ratios are preserved

« closed under composition

xX'=ax+by
y'=cx+dy

12

Review: Homogeneous Coordinates Geometrically

homogeneous cartesian
A" Xy
(X, Y, W) (_ s
| w w

= point in 2D cartesian + weight w =
point P in 3D homog. coords
= multiples of (x,y,w)

= all homogeneous points on 3D line L
represent same 2D cartesian point

= homogenize to convert homog. 3D
point to cartesian 2D point

= divide by w to get (x/w, y/w, 1)
= w=0 is direction; (0,0,0) is undefined

13

Review: 3D Homog Transformations

x Use 4x4 matrices for 3D transformations

translate(a,b,c) scale(a,b,c)

x| |1 all x| x'] [a 1 x]

| 1 by Yi_| b y

4 1 ¢z 4 C Z

1 1|1 1 Ry
Rotate(x, 0) Rotate (y,8) Rotate (z,60)
x'] [1 Tx] [cosé sin® | [cos@ —siné
V0o cosfd —sind y 1 sin@d cosé@
| sin@ cosé@ Z —sin 6 cos @ 1
1 L] 1] 1 1

Review: Affine Transformations

s affine transforms are combinations of
= linear transformations - 1T -
= translations

S

<
|l
S X Q
S
s

= properties of affine transformations
= Origin does not necessarily map to origin
« lines map to lines
= parallel lines remain parallel
= ratios are preserved
« closed under composition

Review: Composing Transformations

ORDER MATTERS!

F 3 F X
T(1,1) & L‘ R{45) &

@]_ *
R(45) T{1,1) T(1,1) R({45) @

.) VA

TaTb =Tb Ta, but Ra Rb '= Rb Ra and Ta Rb != Rb Ta

16

Review: Composing Transforms

= order matters
= 4x4 matrix multiplication not commutative!

= moving to origin
= transformation of geometry into coordinate
system where operation becomes simpler
= perform operation

= transform geometry back to original
coordinate system

17

Review: Composing Transformations
p=TRp

= which direction to read?

= right to left
= Interpret operations wrt fixed coordinates
= Moving object

= left to right OpenGL pipeline ordering!
= Interpret operations wrt local coordinates
= changing coordinate system

= OpenGL updates current matrix with postmultiply
= glTranslatef(2,3,0);
= glRotatef(-90,0,0,1);
= glVertexf(1,1,1);

= Specify vector last, in final coordinate system
=« first matrix to affect it is specified second-to-last 18

Review: Arbitrary Rotation

W

= problem: <

= given two orthonormal coordinate systems XYZ and UVW

=« find transformation from one to the other
m dAnswer.

= transformation matrix R whose columns are U,V,W:

R=u v. w

Review: Interpreting Transformations

right to left: moving object

p=TRp -

A intuitive?

translate by (-1,0)

>

(2,1) . . .
o left to right: changing coordinate system

‘ (1,1)
T) OpenGL

= same relative position between object and
basis vectors

20

Review: Transformation Hierarchies

= transforms apply to graph nodes beneath them
= design structure so that object doesn't fall apart
= instancing

Head an eckLeg ;j\fhd\Fnut

B

Head Neck leg Foot 21

Review: Matrix Stacks

= OpenGL matrix calls postmultiply matrix M onto current
matrix P, overwrite it to be PM

= Or can save intermediate states with stack

= No need to compute inverse matrices all the time
= modularize changes to pipeline state

= avoids accumulation of numerical errors

D = C scale(2,2,2) trans(1,0,0)

DrawSquare()
C glPushMatrix()

glScale3f(2,2,2)
glTranslate3f(1,0,0)

O
> W O |0

> (0O | O

A DrawSquare()

glPopMatrix()

22

Review: Transforming Normals

s shear, nonuniform scale makes normal
nonperpendicular

= nheed to use inverse transpose matrix instead

<

23

Review: Display Lists

= precompile/cache block of OpenGL code for reuse
= efficiency
= exact optimizations depend on driver
« multiple instances of same object
=« static objects redrawn often
= exploit hierarchical structure when possible

= set up list once with gINewList/glEndList
« call multiple times

24

Viewing

25

Using Transformations

= three ways
= modelling transforms
= place objects within scene (shared world)
= Viewing transforms
= place camera
= projection transforms
= change type of camera

26

Viewing and Projection

= need to get from 3D world to 2D image

= projection: geometric abstraction
= what eyes or cameras do
= two pieces
= viewing transform:
= Where is the camera, what is it pointing at?

= perspective transform: 3D to 2D
= flatten to image

27

Rendering Pipeline

Geomers || Modetow

Database Transform. Lighting

Scan

Conversion || TeXturing Blending

28

Rendering Pipeline

Geometry
Database

Perspective
Transform.

Transform. Lighting

+ Clipping i—

Scan
Conversion

29

0€

..IIIIIII
I

WAOLSUDL[|
| yor4o2fo4y !

L e e e o = =

P = = —-—

| UJOJSUDI] |
L buimal) !

L e e e oo = =

B, ELaal DLNee [suiopsuni
MDA e S T e i S bt saedd | D4y
A et i e B s o ey M
et Wi Bl Bs St L XL S TN L ﬁf,ﬁsomm ,Gm_,n_Og

ydoub 2u20g

auljadid buriapuay

Rendering Pipeline

[Scene graph] = result
O Y

bject geometr _ _
_ = all vertices of scene in shared
Modelling :
S 3D world coordinate system

HAYS Lf,' b ol

1‘{-:7

E&- n% g%:_:

.-.-'?":.;-
ol ERT
r = T i | : 4]
, Viewing okt
| Transform | '
/BP_OJec_f/_o; |

| Transform '

31

Rendering Pipeline

[Scene graph] = result
O Y

bject geometr

=, = scene vertices in 3D view
| Modellng (Camera) coordinate system

l Tmnsforms '

g ‘i.!-- F"{ R A =5

Viewing

Transform

—-— i |

P/"o jection |
| Transform !

32

[o

Scene graph
bject geometr

/

_
| /Moa’e///ng |

| Transforms'!
I_ - I i |
, Viewing
| Transform !

Projection
Transform

Rendering Pipeline

= result
= 2D screen coordinates of
clipped vertices

¥ i e F
,.-i*' ’é‘?ﬁgﬁt
““1

33

Coordinate Systems

s result of a transformation

m Names

= convenience
= giraffe: neck, head, tall
= standard conventions in graphics pipeline
= Object/modelling
= world
= camera/viewing/eye
= SCreen/window
= raster/device

34

Projective Rendering Pipeline

object world viewing
_,| modeling | viewing prolectlor]
transformation transformation transformation clioping
OCS - object/model coordinate system C2N CCS
perspective
WGCS - world coordinate system divide |normalized
VCS - viewing/camera/eye coordinate device
system J y l N2D NDCS
TN . viewport
CGCS - clipping coordinate system transformation
NDCS - normalized device coordinate 1 device
system DCS

DCS - device/display/screen coordinate

system

35

Basic Viewing

= starting spot - OpenGL
= camera at world origin
= probably inside an object
= y axisis up
= looking down negative z axis
= Wwhy? RHS with x horizontal, y vertical, z out of screen
= translate backward so scene is visible
=« move distance d = focal length
= can use rotate/translate/scale to move camera
= demo: Nate Robins tutorial transformations

36

Viewing in Project 1

= Where is camera in template code?
= 5 units back, looking down -z axis

37

Convenient Camera Motion

= rotate/translate/scale not intuitive
= arbitrary viewing position
= eye point, gaze/lookat direction, up vector

38

Convenient Camera Motion

= rotate/translate/scale not intuitive
= arbitrary viewing position
= eye point, gaze/lookat direction, up vector

y

WCS

lookat > @

up

eye ///,/

Peye

N

/ Pref

AN

39

From World to View Coordinates: W2V

= translate eye to origin
= rotate vector (lookat — eye) to w axis
= rotate around w to bring up into vw-plane

y lookat —> @

Pref
RN

N
<
P,
0p)
>
<
c
©
~/

40

OpenGL Viewing Transformation

gluLookAt (ex, ey, ez,1x,1ly,1lz,ux,uy,uz)

= postmultiplies current matrix, so to be safe:

glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity();

gluLookAt (ex, ey, ez,1x,1ly,1lz,ux,uy,uz)
// now ok to do model transformations

= demo: Nate Robins tutorial projection

41

Deriving W2V Transformation

1 0 O -,
. 0 1 0 —e
= translate eye to origin T)
—e
<
000 1
y lookat > @
X Pref
WGCS AV >\A
, ves | up }
eye A~

N
/F:%

42

Deriving W2V Transformation

= rotate view vector (lookat — eye) to w axis
= W IS just opposite of view/gaze vector ¢

]
y lookat > @
X Pref
WCS Ny >\A
SN Ves | up }
et

N
/I;%

Deriving W2V Transformation

= rotate around w to bring up into vw-plane
= U should be perpendicular to vw-plane, thus

perpendicular to w and up vector t

= V should be perpendicular to u and w

y

tXW y=-—wxu

—»> @

u-=
Ht X WH lookat
X
A VvV \
VCS up
eye / L

Pref

44

Deriving W2V Transformation

= rotate from WCS xyz into uvw coordinate system
with matrix that has rows u, v, w

tXw n g
U= vV=wXu W=—8=—7—
o] T TR

R Ve oV, V. 0

w, w, w0

0 0 0 1]

= reminder: rotate from uvw to xyz coord sys with
matrix M that has columns u,v,w

« rotate from xyz coord sys to uvw coord sys with
matrix MT that has rows u,v,w

45

10N

W2V Transformati

iving

Der

MZ VZ WZ -
uy Vy Wy -)
x
ux VX W O
]
1
s

s M=

<P} <P} ML
o o
= > B
_ _ _
MZ VZ WZ -
uy Vy Wy -
x
ux VX W O
1
= >~ N
\V) \) V-
_ _ _
o O - O
o - O O
— O O O
o O O -
MZ VZ WZ -)
uy Vy Wy -
x
ux VX W O
1
=
o
-
N
_
S
~
N
Q
=

46

Moving the Camera or the World?

= two equivalent operations
= Mmove camera one way vs. move world other way

= example
« Initial OpenGL camera: at origin, looking along -z axis
« create a unit square parallel to camera at z =-10

« translate in z by 3 possible in two ways

= camera moves to z = -3
= Note OpenGL models viewing in left-hand coordinates

= camera stays put, but square moves to -7
= resulting image same either way

= possible difference: are lights specified in world or view
coordinates?

47

World vs. Camera Coordinates

a= (1!1)W

N b = (1,1)¢; = (3:2)w

b C = (1,1)c= (1,3)c1 = (4,4)w

48

Projections |

49

Pinhole Camera

= ingredients
= box
« film
= hole punch
= results www.kodak.com
= pictures!

www.debevec.org/Pinhole

www.pinhole.org

Pinhole Camera

= theoretical perfect pinhole

pinhole

film plane

one ray
of projection

51

Pinhole Camera

= NoNn-zero sized hole

pinhole

multiple rays
of projection

film plane

52

Pinhole Camera

= field of view and focal length

pinhole
field of view

film plane

53

Pinhole Camera

= field of view and focal length

T

. focal field of view

film plane "

Real Cameras

= pinhole camera has small apertiure (lens opening)
= hard to get enough light to expose the film

real pinhole camera
aperture

« lens permits larger apertures

« lens permits changing distance to film plane without
actually moving the film plane

camera f

|
(iore |1
lens

price to pay: limited depth of field

55

Graphics Cameras

= real pinhole camera: image inverted

eye

image point

plane

= computer graphics camera: convenient equivalent

eye
point

center of _
projection Image
plane

56

General Projection

= Image plane need not be perpendicular to
view plane

\ eye
: point
image
plane

eye
point

image
plane

57

Perspective Projection

= OUr camera must model perspective

Perspective Projection

= OUr camera must model perspective

Perspective Projection

= OUr camera must model perspective

Perspective Projections
= classified by vanishing points

one-point
perspective

< -

\/

two-point

perspective three-point

perspective

Projective Transformations

= planar geometric projections
= planar: onto a plane

= geometric: using straight lines
= projections: 3D -> 2D

= aka projective mappings

= counterexamples?

62

Projective Transformations

= properties
= lines mapped to lines and triangles to triangles
= parallel lines do NOT remain parallel
= €.9. rails vanishing at infinity
= affine combinations are NOT preserved

= €.9. center of a line does not map to center of
projected line (perspective foreshortening)

63

Perspective Projection

= project all geometry
= through common center of projection (eye point)
= onto an image plane

64

Perspective Projection

projection
plane

how tall should
this bunny be?

65

Basic Perspective Projection

similar triangles

y| PGY2)
Y_y o yd
P(X,Y',Z) iz 0 3

| z
z’=d

X X ox-d .
— = X=— but z=d

d z Z
= honuniform foreshortening
= not affine

66

Perspective Projection

= desired result for a point [x, y, z, 1]' projected
onto the view plane:

X _x y .
d 7z d z
d .
x':x — x) y':y d — y) Z:d
z z/d z z/d

= what could a matrix look like to do this?

67

Simple Perspective Projection Matrix

X

z/d
Y

z/d

d

68

Simple Perspective Projection Matrix

X

z/d
Y

z/d

d

IS homogenized version of

where w = z/d

69

Simple Perspective Projection Matrix

_ . — X
dd | g homogenized version of Y
Y)
z/d | wherew = 2z/d 2/d_
d B _ B -
o x] [1 0 0 0fx
y | O 1 O Ofy
z | 100 1 0fz
z/d| |0 0 1/d Of1

Perspective Projection

= expressible with 4x4 homogeneous matrix
= use previously untouched bottom row
= perspective projection is irreversible

= many 3D points can be mapped to same
(X, y, d) on the projection plane

= N0 way to retrieve the unique z values

71

Moving COP to Infinity

= as COP moves away, lines approach parallel
= when COP at infinity, orthographic view

-1
—N

72

Orthographic Camera Projection

camera’s back plane
parallel to lens

infinite focal length

no perspective
convergence

just throw away z values

=

P—*h@(\]

73

Perspective to Orthographic

= transformation of space
= center of projection moves to infinity

= view volume transformed

= from frustum (truncated pyramid) to
parallelepiped (‘\box)

x Akx

74

View Volumes

= specifies field-of-view, used for clipping
= restricts domain of z stored for visibility test

perspective view volume orthographic view volume

y=top
\ x=left

z |\—1T
x=right
VCS
z=-far X /z:-far

x=right y=bottom ,_ oq

75

View Volume

convention

= viewing frustum mapped to specific
parallelepiped

= Normalized Device Coordinates (NDC)
= Same as clipping coords

= only objects inside the parallelepiped get
rendered

= which parallelepiped?
= depends on rendering system

76

Normalized Device Coordinates

left/right x =+/- 1, top/bottom y =+/- 1, near/far z=+/- 1

Camera coordinates NDC

right

o
-
S
o
-
S
o
-
S
o
.
o
-

left

77

Understanding Z

= Z axis flip changes coord system handedness
= RHS before projection (eye/view coords)
= LHS after projection (clip, norm device coords)

ves NDCS
s @/ @ (1,1,1)

Z/K/‘/ x=right (-1,-1,-1) \\/XZ
\/z=-far

Z=-near

y=bottom

78

Understanding Z

near, far always positive in OpenGL calls
glOrtho(left,right,bot,top,near.far);

glFrustum(left,right,bot,top,near,far);
glPerspective(fovy,aspect,near,.far);

perspective view volume orthographic view volume

y=top

x=left ’

z | —T1T
x=right
VCS
z=-far / /z:-far

x=right y=bottom ,_ ...,

79

Understanding Z

= why near and far plane?

= near plane:

= avoid singularity (division by zero, or very
small numbers)

= far plane:

= Store depth in fixed-point representation
(integer), thus have to have fixed range of
values (0...1)

= avoid/reduce numerical precision artifacts for
distant objects

80

Orthographic Derivation

= Scale, translate, reflect for new coord sys

z/K/,/
\ x=right

/z=-far

Z=-near

y=bottom

VCS
y=top
yx:left //

NDCS

(-1,-1,-1)

(1,1,1)

81

Orthographic Derivation

= Scale, translate, reflect for new coord sys
y=top —> y'=1

y=a-y+b

y=bot = y'=—1

z/K/,/
\ x=right

/z=-far

Z=-near

y=bottom

VCS
y=top
yx:left //

NDCS

(-1,-1,-1)

(1,1,1)

82

Orthographic Derivation

= Scale, translate, reflect for new coord sys

y=top — y'=1

y=a-y+b

y=bot = y'=—1

b=1-a-top,b=—1—a-bot
l—a-top=—1—a-bot
1-(—1)=—a-bot—(—a-top)
2 = a(—bot +top)
2
a=
top —bot

l=a-top+b
—1l=a-bot+b

1= 2 top+b
top —bot

b1 2-top

top —bot
_ (top—>bot)—2-top
top —bot

b

b= —top —bot

top —bot o3

Orthographic Derivation

= Scale, translate, reflect for new coord sys

y=top = y'=1
y=a-y+b |
y =bot = y'=-1

VCS 2
a4 =
(\ top —bot
x=left //
y - top + bot
Z/K/\ x=right top — bot

/z=-far

Z=-near

y=bottom
same idea for right/left, far/near

84

Orthographic Derivation

= Scale, translate, reflect for new coord sys

P'=

2

right — left

-2

far —near

0

_ right +left |
right — left

_top+bot
top—bot |p

far +near

far —near

1

85

Orthographic Derivation

= scale, translate, reflect for new coord sys

2 0 0 _ right +left |
right — left right —left
0 2 0 _top+bot
p— top —bot top —bot
0 0 -2 _ Jar +near
far —near far —near

0 0 0 1

Orthographic Derivation

= Scale, translate, reflect for new coord sys

P'=

2

right — left

_ right +left |
right — left

_top+bot
top —bot |Ip

far —near

0

far +near

far —near

1

87

Orthographic Derivation

= Scale, translate, reflect for new coord sys

P'=

2

right — left

]2

far —near

0

_ right +left |
right — left

_top+bot
top—bot |p

far +near

far —near

1

88

Orthographic OpenGL

glMatrixMode (GL_PROJECTION) ;
glLoadIdentity();
glOrtho (left, right, bot, top, near, far);

89

Projections Il

90

NDC to Viewport Transformation

= generate pixel coordinates

= map x, y from range —1...1 (NDC) to pixel
coordinates on the display

= Involves 2D scaling and translation

[display

X -

viewport

NDC to Viewport Transformation

= 2D scaling and translation

(1) (w,h)

NDCS DCS b
I a
('1!'1) = y
(0,0) X
X +1
Xppg = W(wpes T 1) OpenGL
2
(+1) glViewport (x,y,a,b);
-y YNDCS default:
Ybcs
2 glViewport (0,0, w,h);
_ (Zypes +1)

ipcs =
2

92

Origin Location

= yet more possibly confusing conventions
= OpenGL.: lower left
= most window systems: upper left

= often have to flip your y coordinates
= when interpreting mouse position

93

Perspective Example

. view volume
trafl;f n \/108' 1 left = -1, right = 1
€It X=-1, y=- bot = -1, top =1
right x=1, y=-1 near = 1, far = 4
X=-1 X=1
/ 1 ymax-1
= real 7 ;é\ ,;é
e midpoint 1 " A
- I -1 4 1 0 g xmax-1
NDCS DCS
M (z not shown) (z not shown)
VCS
top view

94

Viewing Transformation

VCS

Z

ty

image \
plane

o

AN

X

y

wcs X

object
OCS

—

modeling
transformation

M

mod

world
WCS

—_—

viewing

VCS

viewing
transformation

_—

M

cam

OpenGL ModelView matrix

95

Projective Rendering Pipeline

object world viewing
_,| modeling | viewing

transformation

transformation

projection
"| transformation .

OCS - object/model coordinate system

WCS - world coordinate system

VCS - viewing/camera/eye coordinate

system

CCS - clipping coordinate system

NDCS - normalized device coordinate

system

DCS - device/display/screen coordinate

system

C2N

perspective

N2D

divide |normalized

Vi
transformation

l

Ing
CCS

device
NDC

device
DCS

96

Perspective Projection

= specific example

= assume image plane at z=-1

= a point [x,y,z, /]’ projects to [-x/z,-V/z,-2/z, 1] =
[x,y,2,-z]"

o

o
o
03
o
o
o
.
S
o
. —
S
o
.
o
. .x
.
o
.
.x o
-
.
o
-
S
R
o
.
o
o
.
S
o
.
o
- Z
o
-
o
o
-
o
o
. R —
* Z
o
> — -

Yo
.
g
‘e
o,
O
.
.
g
0
g
.
‘e
0

e
.,
‘e
0
.
.,
0
.
‘e
‘e
0
0
.,
0
.
‘e
‘e
.,
0
.
0
.
.
‘e
0
*,
0
.
0
0
.,
‘e
0
.
0
0
.,
0
.
‘e
‘e
g

_ N = =

__,| projection

Perspective Projection

o O O =
o o = O

0
0
©

transformation
alter w

o O O O

—_ N < =
1
N <
/7~ -\

—x/z

)—y/Z
—1

perspective
division
/| W

1

98

Canonical View Volumes

= standardized viewing volume representation

orthographic perspective
orthogonal
parallel
X Or ok xory X ory=+/-2z
1 ,olane back
Front front ~ plane

Plane 1 Z plane ;Z

-1

Why Canonical View Volumes?

= permits standardization

= Clipping
= easier to determine if an arbitrary point is
enclosed in volume

= consider clipping to six arbitrary planes of a
viewing volume versus canonical view volume

= rendering

= projection and rasterization algorithms can be
reused

100

Projection Normalization

= One additional step of standardization

= warp perspective view volume to orthogonal
view volume

= render all scenes with orthographic projection!

d

7=0 Z

101

Predistortion

Perspective Normalization

= perspective viewing frustum transformed to
cube

= orthographic rendering of cube produces same
image as perspective rendering of original

103

Demos

= Tuebingen applets from Frank Hanisch

= http://www.gris.uni-tuebingen.de/projects/grdev/doc/html/etc/
Appletindex.html#Transformationen

104

Perspective Warp

s matrix formulation

(x,¥,2,1)

oSO =
S = O

-
-

‘&O -

L

QUK

L

K

S U= O

_((z—a)-d Z)
- X,y, s
d—a d
X y d’
'x 9 9 — 9 9
(5p235:2,) (z/d 7/d d-«

(1_

<

= preserves relative depth (third coordinate)
= what does o =0mean?

)

Perspective Warp

s matrix formulation

10 0 0 | x
0 1 0 0 Ix y
d—oa d—o|z d—o
00 4 0 H- <
B d i L d
ox Yy d’
(X,,Y,:2,) (z/d’z/d’d—a

(1_

<

= preserves relative depth (third coordinate)
= what does ¢ =0 mean?

)

Projection Normalization

viewing clipping normalized

V V2C CCS C2N device
cS NDCS

__,| projection |—.| perspective
transformation division

alter w /| W

= distort such that orthographic projection of
distorted objects is desired persp projection

= separate division from standard matrix
multiplies

= Clip after warp, before divide
= division: normalization

107

Projective Rendering Pipeline

glVertex3f(x,y,z)

object world viewing
ocs 92W wecs W2V ygg VaCalterw

modeling viewing projection

e [

transformation transformation "| transformation

giTranslatef(x,y,z) gluLookAt(...) C2N
glRotatef(th,x,y,z)

glFrustum(...)

clipping
/w CCS

perspective

L . division |normalized
OCS - object coordinate system
’ Yo S lutinitWindowSize(w; h) \op device

WCS - world coordinate system glViewport(x,y,a,b) NDCS

VCS - viewing coordinate system viewport_
transformation

CCS - clipping coordinate system 1 device

NDCS - normalized device coordinate system DCS

DCS - device coordinate system 108

Coordinate Systems

Projection
Mlatrizx

Diwride by W

=cale &
Bias

http.//www.btinternet.com/~danbgs/perspective/ 109

Perspective Derivation

B

AN

x=right

z=-far

NDCS

(-1,-1,-1)

(1,1,1)

110

Perspective Derivation

X' 1 0 O Of«x
earlier: Y| |01 0 0fy
Z1 100 1 o0z
w'| |0 0 1/d Of1

-

S
A % =

N
S O O I
S © T o

A IS

o O o o©

=

111

Perspective Derivation

x=left > x'/w'=1

x| [E 0 A 0x] x=Ex+Az
wl [0 0 -1 01 , y =bottom — y'/ w'=—1
| _ | | W:_Z
z=—near — 7z /w'=1
z=—far = 7'/w'=-1
' Fy+B Fy+B Fy+B
y'=Fy+B;, ==227°2¢ -XTR N7
w w \%% —7Z
A
l=F2> +B* 1=F2 _B 1=F—P _p
—Z —Z —Z — (—near)
1= _p

112

Perspective Derivation

= similarly for other 5 planes
= 6 planes, 6 unknowns

- 2n 0 r—+1
r—I r—I
0 2n t+b
t—b t—b

0, g —UEm
f—n
0 0 —1

0

0
—2n

f—n
0

113

Perspective Example

r+1 0
r—I
t+b 0
t—b

—(f+n) —2fn
—1 0

view volume
= left=-1, right =1
= bot=-1, top=1
= Near=1,far=4

1 0
0 1
0 0
0 0

0
0
—5/3
—1

0
0
—38/3
0

Perspective Example

1
-1
—52,0s/3—8/3

— Zycs

N

1
1
—5/3
i —1
Xnpes =~ Zyes

Yapes = U Zycs

<NDCS =

5 3
|

—8/3

3 3Zyes

115

Asymmetric Frusta

= our formulation allows asymmetry
M Why bother?

right right

o
-
S
o
-
S
o
-
S
o
.
o
-

T
0
0
.
‘e
0
.,
0
.
0
0
‘e
‘e
o)

left - left

116

Simpler Formulation

= left, right, bottom, top, near, far
= nonintuitive
= often overkill
= ook through window center
= Symmetric frustum
= constraints
= left = -right, bottom = -top

117

Field-of-View Formulation

= FOV in one direction + aspect ratio (w/h)
= determines FOV in other direction
= also set near, far (reasonably intuitive)

118

Perspective OpenGL

glMatrixMode (GL_PROJECTION) ;
glLoadIdentity();

glFrustum(left, right,6 bot, top, near, far);

or
glPerspective (fovy, aspect, near, far);

119

Demo: Frustum vs. FOV

= Nate Robins tutorial (take 2):
= hitp://www.xmission.com/~nate/tutors.html

120

Projection Taxonomy

planar
projections

perspective: IS lli'

1,2,3-point parallel |
Projectors L

/ \ P W‘j% ction PI. Proje cfion PI. P rf;z‘j‘ ectfion PI.

oblique orthographic —

cabinet cavalier \ N\
A.OBLIQUE B.AXONOMETRIC C.PERSPECTIVE

axonometric:
isometric
dimetric
trimetric

Projectors

conve

top,
front,
side

http://ceprofs.tamu.edu/tkramer/ENGR%20111/5.1/20

121

Perspective Projections
= classified by vanishing points

one-point
perspective

< -

\/

two-point

perspective three-point

perspective
122

Parallel Projection

= projectors are all parallel
= VS. perspective projectors that converge
= orthographic: projectors perpendicular to

projection plane

= oblique: projectors not necessarily
perpendicular to projection plane

Orthographic

@3

Oblique

Axonometric Projections

= projectors perpendicular to image plane

= select axis lengths

2 EbEqual axes
2 EBEqual angles

A ISOMETRIC B.DIMETRIC C.TRIMETRIC

http://ceprofs.tamu.edu/tkramer/ENGR%20111/5.1/20 124

= lengths remain constant

= both have true front view
= cavalier: distance true
= cabinet: distance half

)

Y4

y

Oblique Projections

= projectors oblique to image plane
= select angle between front and z axis

cavalier

a

X

di|<a

d/2

X

cabinet

125

Demos

= Tuebingen applets from Frank Hanisch

= http://www.gris.uni-tuebingen.de/projects/grdev/doc/html/etc/
Appletindex.html#Transformationen

126

