

University of British Columbia CPSC 314 Computer Graphics May-June 2005

Tamara Munzner

Viewing, Projections I/II

Week 2, Tue May 17

http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005

News

- extra lab coverage with TAs
 - 12-2 Mondays, Wednesdays
 - for rest of term
 - just for answering questions, no presentations

Reading: Today

- FCG Chapter 6
- FCG Section 5.3.1
- RB rest of Chap Viewing
- RB rest of App Homogeneous Coords

Reading: Next Time

- FCG Section 2.11
- FCG Chap 3
 - except 3.8
- FCG Chap 17 Human Vision (pp 293-298)
- FCG Chap 18 Color pp 301-311
 - until Section 18.9 Tone Mapping

Textbook Errata

- list at http://www.cs.utah.edu/~shirley/fcg/errata
 - **p** 113
 - last matrix, last column denominators
 - D-a -> A-a
 - E-b -> B-b
 - F-c -> C-c
 - **p** 120
 - "Sometimes we will want to take the inverse of P" should be "M p" instead of "P"

Correction²: Vector-Vector Subtraction

subtract: vector - vector = vector

$$\mathbf{u} - \mathbf{v} = \begin{bmatrix} u_1 - v_1 \\ u_2 - v_2 \\ u_3 - v_3 \end{bmatrix}$$

$$(3,2)-(6,4)=(-3,-2)$$

$$(3,2)-(6,4)=(-3,-2)$$

 $(2,5,1)-(3,1,-1)=(-1,4,2)$

argument reversal

Review: 2D Rotation

Review: 2D Rotation From Trig Identities


```
x = r \cos(\phi)
y = r \sin(\phi)
x' = r \cos (\phi + \theta)
y' = r \sin (\phi + \theta)
Trig Identity...
x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)
y' = r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta)
 Substitute...
x' = x \cos(\theta) - y \sin(\theta)
y' = x \sin(\theta) + y \cos(\theta)
```

Review: 2D Rotation: Another Derivation

$$x' = x \cos \theta - y \sin \theta$$
$$y' = x \sin \theta + y \cos \theta$$

$$x' = A - B$$
$$A = x \cos \theta$$

Review: Shear, Reflection

- shear along x axis
 - push points to right in proportion to height

- reflect across x axis
 - mirror

Review: 2D Transformations

matrix multiplication

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

scaling matrix

matrix multiplication

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

rotation matrix

vector addition

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} x+a \\ y+b \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}$$

Review: Linear Transformations

- linear transformations are combinations of
 - shear

 - reflect

• scale
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$x' = ax + by$$

$$x' = ax + by$$
$$y' = cx + dy$$

- properties of linear transformations
 - satisifes T(sx+ty) = s T(x) + t T(y)
 - origin maps to origin
 - lines map to lines
 - parallel lines remain parallel
 - ratios are preserved
 - closed under composition

Review: Homogeneous Coordinates Geometrically

homogeneous

cartesian

$$(x, y, w) \xrightarrow{/\mathbf{w}} (\frac{x}{w}, \frac{y}{w})$$

- point in 2D cartesian + weight w = point P in 3D homog. coords
- multiples of (x,y,w)
 - all homogeneous points on 3D line L represent same 2D cartesian point
 - homogenize to convert homog. 3D point to cartesian 2D point
 - divide by w to get (x/w, y/w, 1)
- w=0 is direction; (0,0,0) is undefined

Review: 3D Homog Transformations

use 4x4 matrices for 3D transformations

translate(a,b,c) scale(a,b,c)

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & & & a \\ & 1 & & b \\ & & 1 & c \\ & & & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} a & & & \\ & b & & \\ & & c & \\ & & & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \\ 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Rotate(x, θ)

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & & & & \\ \cos \theta & -\sin \theta & \\ \sin \theta & \cos \theta & \\ & & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \begin{bmatrix} \cos \theta & & \sin \theta \\ & 1 \\ -\sin \theta & & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \\ & & 1 \end{bmatrix}$$

Rotate (y, θ) Rotate (z, θ)

$$\begin{bmatrix} \cos \theta & \sin \theta \\ 1 \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$\begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}$$
1

Review: Affine Transformations

- affine transforms are combinations of
 - linear transformations
 - translations

$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

- properties of affine transformations
 - origin does not necessarily map to origin
 - lines map to lines
 - parallel lines remain parallel
 - ratios are preserved
 - closed under composition

Review: Composing Transformations

Ta Tb = Tb Ta, but Ra Rb != Rb Ra and Ta Rb != Rb Ta

Review: Composing Transforms

- order matters
 - 4x4 matrix multiplication not commutative!

- moving to origin
 - transformation of geometry into coordinate system where operation becomes simpler
 - perform operation
 - transform geometry back to original coordinate system

Review: Composing Transformations

$$p' = TRp$$

- which direction to read?
 - right to left
 - interpret operations wrt fixed coordinates
 - moving object
 - left to right
 OpenGL pipeline ordering!
 - interpret operations wrt local coordinates
 - changing coordinate system
 - OpenGL updates current matrix with postmultiply
 - glTranslatef(2,3,0);
 - glRotatef(-90,0,0,1);
 - glVertexf(1,1,1);
 - specify vector last, in final coordinate system
 - first matrix to affect it is specified second-to-last

Review: Arbitrary Rotation

- problem:
 - given two orthonormal coordinate systems XYZ and UVW
 - find transformation from one to the other
- answer:
 - transformation matrix R whose columns are U, V, W:

$$R = \begin{bmatrix} u_x & v_x & w_x \\ u_y & v_y & w_y \\ u_z & v_z & w_z \end{bmatrix}$$

Review: Interpreting Transformations

p' = TRp

translate by (-1,0)

right to left: moving object

intuitive?

left to right: changing coordinate system

OpenGL

same relative position between object and basis vectors

Review: Transformation Hierarchies

- transforms apply to graph nodes beneath them
- design structure so that object doesn't fall apart
- instancing

Review: Matrix Stacks

- OpenGL matrix calls postmultiply matrix M onto current matrix P, overwrite it to be PM
 - or can save intermediate states with stack
 - no need to compute inverse matrices all the time
 - modularize changes to pipeline state
 - avoids accumulation of numerical errors

Review: Transforming Normals

- shear, nonuniform scale makes normal nonperpendicular
 - need to use inverse transpose matrix instead

Review: Display Lists

- precompile/cache block of OpenGL code for reuse
 - efficiency
 - exact optimizations depend on driver
 - multiple instances of same object
 - static objects redrawn often
 - exploit hierarchical structure when possible
- set up list once with glNewList/glEndList
 - call multiple times

Viewing

Using Transformations

- three ways
 - modelling transforms
 - place objects within scene (shared world)
 - viewing transforms
 - place camera
 - projection transforms
 - change type of camera

Viewing and Projection

- need to get from 3D world to 2D image
- projection: geometric abstraction
 - what eyes or cameras do
- two pieces
 - viewing transform:
 - where is the camera, what is it pointing at?
 - perspective transform: 3D to 2D
 - flatten to image

- result
 - all vertices of scene in shared3D world coordinate system

- result
 - scene vertices in 3D view (camera) coordinate system

- result
 - 2D screen coordinates of clipped vertices

Coordinate Systems

- result of a transformation
- names
 - convenience
 - giraffe: neck, head, tail
 - standard conventions in graphics pipeline
 - object/modelling
 - world
 - camera/viewing/eye
 - screen/window
 - raster/device

Projective Rendering Pipeline

system

Basic Viewing

- starting spot OpenGL
 - camera at world origin
 - probably inside an object
 - y axis is up
 - looking down negative z axis
 - why? RHS with x horizontal, y vertical, z out of screen
- translate backward so scene is visible
 - move distance d = focal length
- can use rotate/translate/scale to move camera
 - demo: Nate Robins tutorial transformations

Viewing in Project 1

- where is camera in template code?
 - 5 units back, looking down -z axis

Convenient Camera Motion

- rotate/translate/scale not intuitive
- arbitrary viewing position
 - eye point, gaze/lookat direction, up vector

Convenient Camera Motion

- rotate/translate/scale not intuitive
- arbitrary viewing position
 - eye point, gaze/lookat direction, up vector

From World to View Coordinates: W2V

- translate eye to origin
- rotate view vector (lookat eye) to w axis
- rotate around w to bring up into vw-plane

OpenGL Viewing Transformation

```
gluLookAt(ex,ey,ez,lx,ly,lz,ux,uy,uz)
```

postmultiplies current matrix, so to be safe:

```
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(ex,ey,ez,lx,ly,lz,ux,uy,uz)
// now ok to do model transformations
```

demo: Nate Robins tutorial projection

translate eye to origin

$$\mathbf{T} = \begin{bmatrix} 1 & 0 & 0 & -e_{x} \\ 0 & 1 & 0 & -e_{y} \\ 0 & 0 & 1 & -e_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- rotate view vector (lookat eye) to w axis
 - w is just opposite of view/gaze vector g

$$\mathbf{w} = -\hat{\mathbf{g}} = -\frac{\mathbf{g}}{\|\mathbf{g}\|}$$

- rotate around w to bring up into vw-plane
 - u should be perpendicular to vw-plane, thus perpendicular to w and up vector t
 - v should be perpendicular to u and w

rotate from WCS xyz into uvw coordinate system with matrix that has rows u, v, w

$$\mathbf{u} = \frac{\mathbf{t} \times \mathbf{w}}{\|\mathbf{t} \times \mathbf{w}\|} \qquad \mathbf{v} = \mathbf{w} \times \mathbf{u} \qquad \mathbf{w} = -\hat{\mathbf{g}} = -\frac{\mathbf{g}}{\|\mathbf{g}\|}$$

$$\mathbf{R} = \begin{bmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ w_x & w_y & w_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- reminder: rotate from uvw to xyz coord sys with matrix M that has columns u,v,w
 - rotate from xyz coord sys to uvw coord sys with matrix M^T that has rows u,v,w

$$\mathbf{R} = \begin{bmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ w_x & w_y & w_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{T} = \begin{bmatrix} 1 & 0 & 0 & -e_x \\ 0 & 1 & 0 & -e_y \\ 0 & 0 & 1 & -e_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{T} = \begin{bmatrix} 1 & 0 & 0 & -e_{X} \\ 0 & 1 & 0 & -e_{X} \\ 0 & 0 & 1 & -e_{Z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{M}_{world->view} = \begin{bmatrix} u_x & u_y & u_z & 0 & 1 & 0 & 0 & -e_x \\ v_x & v_y & v_z & 0 & 0 & 1 & 0 & -e_y \\ w_x & w_y & w_z & 0 & 0 & 0 & 1 & -e_z \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} u_x & u_y & u_z & -\mathbf{u} \bullet \mathbf{e} \\ v_x & v_y & v_z & -\mathbf{v} \bullet \mathbf{e} \\ w_x & w_y & w_z & -\mathbf{w} \bullet \mathbf{e} \end{bmatrix}$$

Moving the Camera or the World?

- two equivalent operations
 - move camera one way vs. move world other way
- example
 - initial OpenGL camera: at origin, looking along -z axis
 - create a unit square parallel to camera at z = -10
 - translate in z by 3 possible in two ways
 - camera moves to z = -3
 - Note OpenGL models viewing in left-hand coordinates
 - camera stays put, but square moves to -7
- resulting image same either way
 - possible difference: are lights specified in world or view coordinates?

World vs. Camera Coordinates

$$a = (1,1)_W$$
 $b = (1,1)_{C1} = (3,2)_W$
 $c = (1,1)_{C2} = (1,3)_{C1} = (4,4)_W$

Projections I

- ingredients
 - box
 - film
 - hole punch
- results
 - pictures!

www.kodak.com

www.pinhole.org

www.debevec.org/Pinhole

theoretical perfect pinhole

non-zero sized hole

field of view and focal length

field of view and focal length

Real Cameras

- pinhole camera has small aperture (lens opening)
 - hard to get enough light to expose the film

real pinhole camera

- lens permits larger apertures
- lens permits changing distance to film plane without actually moving the film plane

camera

price to pay: limited depth of field

Graphics Cameras

real pinhole camera: image inverted

computer graphics camera: convenient equivalent

General Projection

image plane need not be perpendicular to view plane

our camera must model perspective

our camera must model perspective

our camera must model perspective

Projective Transformations

- planar geometric projections
 - planar: onto a plane
 - geometric: using straight lines
 - projections: 3D -> 2D
- aka projective mappings
- counterexamples?

Projective Transformations

- properties
 - lines mapped to lines and triangles to triangles
 - parallel lines do NOT remain parallel
 - e.g. rails vanishing at infinity
 - affine combinations are NOT preserved
 - e.g. center of a line does not map to center of projected line (perspective foreshortening)

- project all geometry
 - through common center of projection (eye point)
 - onto an image plane

Basic Perspective Projection

similar triangles

$$\frac{x'}{d} = \frac{x}{z} \to x' = \frac{x \cdot d}{z}$$

but
$$z'=d$$

- nonuniform foreshortening
 - not affine

desired result for a point [x, y, z, 1]^T projected onto the view plane:

$$\frac{x'}{d} = \frac{x}{z}, \quad \frac{y'}{d} = \frac{y}{z}$$

$$x' = \frac{x \cdot d}{z} = \frac{x}{z/d}, \quad y' = \frac{y \cdot d}{z} = \frac{y}{z/d}, \quad z = d$$

what could a matrix look like to do this?

Simple Perspective Projection Matrix

$$\begin{bmatrix} x \\ \hline z/d \\ \hline y \\ \hline z/d \\ d \end{bmatrix}$$

Simple Perspective Projection Matrix

$$\begin{bmatrix} \frac{x}{z/d} \\ \frac{y}{z/d} \end{bmatrix}$$
 is homogenized version of
$$\begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix}$$
 where $w = z/d$

$$\begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix}$$

Simple Perspective Projection Matrix

$$\begin{bmatrix} x \\ \hline z/d \\ \hline y \\ \hline z/d \\ d \end{bmatrix}$$

ed version of
$$\begin{bmatrix} y \\ z \\ z/d \end{bmatrix}$$

$$\begin{bmatrix} \frac{x}{z/d} \\ \frac{y}{z/d} \\ d \end{bmatrix} \text{ is homogenized version of } \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix}$$

- expressible with 4x4 homogeneous matrix
 - use previously untouched bottom row
- perspective projection is irreversible
 - many 3D points can be mapped to same (x, y, d) on the projection plane
 - no way to retrieve the unique z values

Moving COP to Infinity

- as COP moves away, lines approach parallel
 - when COP at infinity, orthographic view

Orthographic Camera Projection

- camera's back plane parallel to lens
- infinite focal length
- no perspective convergence
- just throw away z values

$$\begin{bmatrix} x_p \\ y_p \\ z_p \end{bmatrix} = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x_p \\ y_p \\ z_p \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Perspective to Orthographic

- transformation of space
- center of projection moves to infinity
- view volume transformed
 - from frustum (truncated pyramid) to parallelepiped (box)

View Volumes

- specifies field-of-view, used for clipping
- restricts domain of z stored for visibility test

View Volume

- convention
 - viewing frustum mapped to specific parallelepiped
 - Normalized Device Coordinates (NDC)
 - same as clipping coords
 - only objects inside the parallelepiped get rendered
 - which parallelepiped?
 - depends on rendering system

Normalized Device Coordinates

left/right x = +/-1, top/bottom y = +/-1, near/far z = +/-1

Camera coordinates

NDC

Understanding Z

- z axis flip changes coord system handedness
 - RHS before projection (eye/view coords)
- LHS after projection (clip, norm device coords)

Understanding Z

```
near, far always positive in OpenGL calls glOrtho(left,right,bot,top,near,far); glFrustum(left,right,bot,top,near,far); glPerspective(fovy,aspect,near,far);
```


Understanding Z

- why near and far plane?
 - near plane:
 - avoid singularity (division by zero, or very small numbers)
 - far plane:
 - store depth in fixed-point representation (integer), thus have to have fixed range of values (0...1)
 - avoid/reduce numerical precision artifacts for distant objects

$$y'=a \cdot y + b$$
 $y = top \rightarrow y'=1$ $y = bot \rightarrow y'=-1$

$$y'=a \cdot y+b$$
 $y=top \rightarrow y'=1$ $1=a \cdot top+b$ $y=bot \rightarrow y'=-1$ $-1=a \cdot bot+b$

$$b = 1 - a \cdot top, b = -1 - a \cdot bot$$

$$1 - a \cdot top = -1 - a \cdot bot$$

$$1 - (-1) = -a \cdot bot - (-a \cdot top)$$

$$2 = a(-bot + top)$$

$$a = \frac{2}{top - bot}$$

$$b = \frac{(top - bot) - 2 \cdot top}{top - bot}$$

$$b = \frac{-top - bot}{top - bot}$$

scale, translate, reflect for new coord sys

$$y'=a \cdot y + b$$
 $y = top \rightarrow y'=1$ $y = bot \rightarrow y'=-1$

$$a = \frac{2}{top - bot}$$

$$b = -\frac{top + bot}{top - bot}$$

same idea for right/left, far/near

$$P' = \begin{bmatrix} \frac{2}{right - left} & 0 & 0 & -\frac{right + left}{right - left} \\ 0 & \frac{2}{top - bot} & 0 & -\frac{top + bot}{top - bot} \\ 0 & 0 & \frac{-2}{far - near} & -\frac{far + near}{far - near} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$P' = \begin{bmatrix} \frac{2}{right - left} & 0 & 0 & -\frac{right + left}{right - left} \\ 0 & \frac{2}{top - bot} & 0 & -\frac{top + bot}{top - bot} \\ 0 & 0 & \frac{-2}{far - near} & -\frac{far + near}{far - near} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$P' = \begin{bmatrix} \frac{2}{right - left} & 0 & 0 & -\frac{right + left}{right - left} \\ 0 & \frac{2}{top - bot} & 0 & -\frac{top + bot}{top - bot} \\ 0 & 0 & \frac{-2}{far - near} & -\frac{far + near}{far - near} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Orthographic OpenGL

```
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(left,right,bot,top,near,far);
```

Projections II

NDC to Viewport Transformation

- generate pixel coordinates
 - map x, y from range –1...1 (NDC) to pixel coordinates on the display
 - involves 2D scaling and translation

NDC to Viewport Transformation

2D scaling and translation

$$x_{DCS} = w \frac{(x_{NDCS} + 1)}{2}$$

$$y_{DCS} = h \frac{(y_{NDCS} + 1)}{2}$$

$$z_{DCS} = \frac{(z_{NDCS} + 1)}{2}$$

OpenGL

```
glViewport(x,y,a,b);
default:
   glViewport(0,0,w,h);
```

Origin Location

- yet more possibly confusing conventions
 - OpenGL: lower left
 - most window systems: upper left
- often have to flip your y coordinates
 - when interpreting mouse position

Perspective Example

tracks in VCS: left x=-1, y=-1right x=1, y=-1 view volume left = -1, right = 1

bot = -1, top = 1

near = 1, far = 4

Viewing Transformation

Projective Rendering Pipeline

system

Perspective Projection

- specific example
 - assume image plane at z = -1
 - a point $[x,y,z,1]^T$ projects to $[-x/z,-y/z,-z/z,1]^T \equiv [x,y,z,-z]^T$

Perspective Projection

$$T\begin{pmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ -y/z \\ -1 \\ 1 \end{bmatrix}$$

Canonical View Volumes

standardized viewing volume representation

orthographic orthogonal parallel perspective

Why Canonical View Volumes?

- permits standardization
 - clipping
 - easier to determine if an arbitrary point is enclosed in volume
 - consider clipping to six arbitrary planes of a viewing volume versus canonical view volume
 - rendering
 - projection and rasterization algorithms can be reused

Projection Normalization

- one additional step of standardization
 - warp perspective view volume to orthogonal view volume
 - render all scenes with orthographic projection!

Predistortion

Perspective Normalization

- perspective viewing frustum transformed to cube
- orthographic rendering of cube produces same image as perspective rendering of original

Demos

- Tuebingen applets from Frank Hanisch
 - http://www.gris.uni-tuebingen.de/projects/grdev/doc/html/etc/ AppletIndex.html#Transformationen

Perspective Warp

matrix formulation

$$(x, y, z, 1) \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{d}{d - \alpha} & \frac{1}{d} \\ 0 & 0 & \frac{-\alpha \cdot d}{d - \alpha} & 0 \end{bmatrix} = \left(x, y, \frac{(z - \alpha) \cdot d}{d - \alpha}, \frac{z}{d} \right)$$

$$(x_p, y_p, z_p) = \left(\frac{x}{z/d}, \frac{y}{z/d}, \frac{d^2}{d - \alpha} \left(1 - \frac{\alpha}{z} \right) \right)$$
The contract relative equation (third contribute)

- preserves relative depth (third coordinate)
- what does $\alpha = 0$ mean?

Perspective Warp

matrix formulation

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{d}{d - \alpha} & \frac{-\alpha \cdot d}{d - \alpha} \\ 0 & 0 & \frac{1}{d} & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ (z - \alpha) \cdot d \\ \frac{z}{d} \end{bmatrix}$$
$$(x_p, y_p, z_p) = \left(\frac{x}{z/d}, \frac{y}{z/d}, \frac{d^2}{d - \alpha} \left(1 - \frac{\alpha}{z}\right)\right)$$

- preserves relative depth (third coordinate)
- what does $\alpha = 0$ mean?

Projection Normalization

- distort such that orthographic projection of distorted objects is desired persp projection
 - separate division from standard matrix multiplies
 - clip after warp, before divide
 - division: normalization

Projective Rendering Pipeline

Coordinate Systems

earlier:
$$\begin{vmatrix} x' \\ y' \\ z' \\ w' \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{vmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix}$$

complete: shear, scale, projection-normalization

$$\begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix} = \begin{bmatrix} E & 0 & A & 0 \\ 0 & F & B & 0 \\ 0 & 0 & C & D \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix} = \begin{bmatrix} E & 0 & A & 0 \\ 0 & F & B & 0 \\ 0 & 0 & C & D \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \qquad \begin{aligned} x' &= Ex + Az \\ y' &= Fy + Bz \\ z' &= Cz + D \\ w' &= -z \end{aligned}$$

$$x' = Ex + Az$$

$$y' = Fy + Bz$$

$$z' = Cz + D$$

$$w' = -z$$

$$x = left \rightarrow x'/w' = 1$$

$$x = right \rightarrow x'/w' = -1$$

$$y = top \rightarrow y'/w' = 1$$

$$y = bottom \rightarrow y'/w' = -1$$

$$z = -near \rightarrow z'/w' = 1$$

$$z = -far \rightarrow z'/w' = -1$$

$$y' = Fy + Bz$$
, $\frac{y'}{w'} = \frac{Fy + Bz}{w'}$, $1 = \frac{Fy + Bz}{w'}$, $1 = \frac{Fy + Bz}{-z}$, $1 = F + \frac{y}{-z} + B + \frac{z}{-z}$, $1 = F + \frac{y}{-z} - B$, $1 = F + \frac{top}{-(-near)} - B$, $1 = F + \frac{top}{near} - B$

- similarly for other 5 planes
- 6 planes, 6 unknowns

$$\begin{bmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0 \\ 0 & 0 & \frac{-(f+n)}{f-n} & \frac{-2fn}{f-n} \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

Perspective Example

view volume

$$\begin{bmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0\\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0\\ 0 & 0 & \frac{-(f+n)}{f-n} & \frac{-2fn}{f-n}\\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & -5/3 & -8/3\\ 0 & 0 & -1 & 0 \end{bmatrix}$$

Perspective Example

$$\begin{bmatrix} 1 \\ -1 \\ -5z_{VCS}/3 - 8/3 \\ -z_{VCS} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ -5/3 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ z_{VCS} \\ 1 \end{bmatrix}$$

$$x_{NDCS} = -1/z_{VCS}$$

$$/ \mathbf{W} \qquad y_{NDCS} = 1/z_{VCS}$$

$$5 \qquad 8$$

$$z_{NDCS} = \frac{5}{3} + \frac{8}{3z_{VCS}}$$

Asymmetric Frusta

- our formulation allows asymmetry
 - why bother?

Simpler Formulation

- left, right, bottom, top, near, far
 - nonintuitive
 - often overkill
- look through window center
 - symmetric frustum
- constraints
 - left = -right, bottom = -top

Field-of-View Formulation

- FOV in one direction + aspect ratio (w/h)
 - determines FOV in other direction
 - also set near, far (reasonably intuitive)

Perspective OpenGL

Demo: Frustum vs. FOV

- Nate Robins tutorial (take 2):
 - http://www.xmission.com/~nate/tutors.html

Projection Taxonomy

Perspective Projections

Parallel Projection

- projectors are all parallel
 - vs. perspective projectors that converge
 - orthographic: projectors perpendicular to projection plane
 - oblique: projectors not necessarily perpendicular to projection plane

Axonometric Projections

- projectors perpendicular to image plane
- select axis lengths
 - 3 Equal axes 2 Equal axes 0 Equal axes 3 Equal angles 2 Equal angles 0 Equal angles 30° 110° A.ISOMETRIC B.DIMETRIC C.TRIMETRIC

Oblique Projections

- projectors oblique to image plane
- select angle between front and z axis
 - lengths remain constant
- both have true front view
 - cavalier: distance true
 - cabinet: distance half

Demos

- Tuebingen applets from Frank Hanisch
 - http://www.gris.uni-tuebingen.de/projects/grdev/doc/html/etc/ AppletIndex.html#Transformationen