

University of British Columbia CPSC 314 Computer Graphics May-June 2005

Tamara Munzner

Intro, Math Review, OpenGL Pipeline

Week 1, Tue May 10

http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005

Introduction

Expectations

- hard course!
 - heavy programming and heavy math
- fun course!
 - graphics programming addictive, create great demos
- programming prereq
 - CPSC 216 (Program Design and Data Structures)
 - course language is C++/C
- math prereq
 - MATH 200 (Calculus III)
 - MATH 221/223 (Matrix Algebra/Linear Algebra)

Course Structure

- 45% programming projects
 - 9% project 1 (building beasties with cubes and math)
 - 9% project 2 (flying)
 - 9% project 3 (shaded terrain)
 - 18% project 4 (create your own graphics game)
- 25% final
- 15% midterm (week 4, Tue 5/31)
- 15% written assignments
 - 5% each HW 1/2/3
- programming projects and homeworks synchronized

Programming Projects

- structure
 - C++, Linux
 - OK to cross-platform develop on Windows
 - OpenGL graphics library
 - GLUT for platform-independent windows/UI
 - face to face grading in lab
- Hall of Fame
 - project 1: building beasties
 - previous years: elephants, birds, poodles
 - project 4: create your own graphics game

Late Work

- 3 grace days
 - for unforeseen circumstances
 - strong recommendation: don't use early in term
 - handing in late uses up automatically unless you tell us
- otherwise: 25% per 24 hours
 - no work accepted after solutions handed out
- exception: severe illness or crisis, as per UBC rules
 - Iet me know ASAP (in person or email)
 - must also turn in form with documentation http://www.ugrad.cs.ubc.ca/~cs314/Vjan2005/illness.html

Regrading

to request assignment or exam regrade

- must submit detailed written explanation of why you think the grader was incorrect for the particular problem that you are disputing
- I may regrade entire assignment
 - thus even if I agree with your original request, your score may end up higher or lower

Course Information

course web page is main resource

http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005

updated often, reload frequently

- newsgroup is ubc.courses.cpsc.414
 - note old course number still used
 - readable on or off campus
- (no WebCT)

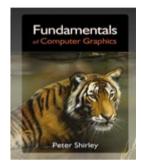
Labs

- attend two labs per week, 3 sessions each
 - Tue/Thu 11-12, 3-4, 4-5
 - Thursday afternoon better than Thu morning
 - Tuesdays: example problems in spirit of written assignments and exams
 - Thursdays: help with programming projects
 - no deliverables
 - strongly recommend that you attend

Teaching Staff

- instructor: Dr. Munzner
 - tmm@cs.ubc.ca
 - office hrs in CICSR 011
 - Mon 4:30-5:30
- TAs: Warren Cheung, Greg Kempe
 - wcheung@cs.ubc.ca
 - kempe@cs.ubc.ca
- use newsgroup not email for all questions that other students might care about

Required Reading



Fundamentals of Computer GraphicsPeter Shirley, AK Peters

OpenGL Programming Guide, v 1.4
OpenGL Architecture Review Board
v 1.1 available for free online

readings posted on schedule page

Learning OpenGL

- this is a graphics course using OpenGL
 - not a course *on* OpenGL
- upper-level class: learning APIs mostly on your own
 - only minimal lecture coverage
 - basics, some of the tricky bits
 - OpenGL Red Book
 - many tutorial sites on the web
 - nehe.gamedev.net

Plagiarism and Cheating

- don't cheat, I will prosecute
 - insult to your fellow students and to me
- programming and assignment writeups must be individual work
 - exception: project 3 can be team of two
 - can discuss ideas, browse Web
 - but cannot just copy code or answers
- you must be able to explain algorithms during face-toface demo
 - or no credit for that part of assignment, possible prosecution

Citation

cite all sources of information

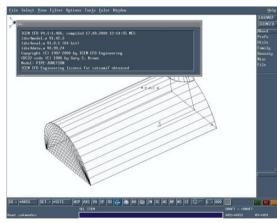
- web sites, study group members, books
- README for programming projects
- end of writeup for written assignments
- http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005/policies.html#plag

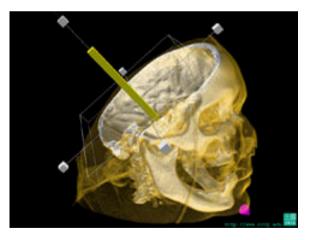
What is Computer Graphics?

create or manipulate images with computer this course: algorithms for image generation

graphical user interfaces
 modeling systems
 applications

simulation & visualization



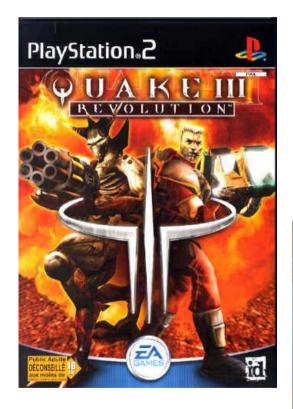


movies

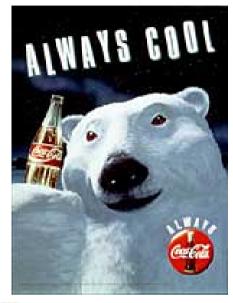
- animation
- special effects

Inspector Gadget © 1999 Walt Disney Pictures. Visual Effects by Dream Quest Images.

computer games

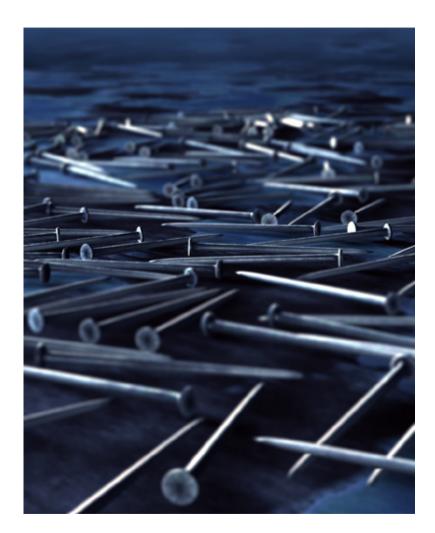


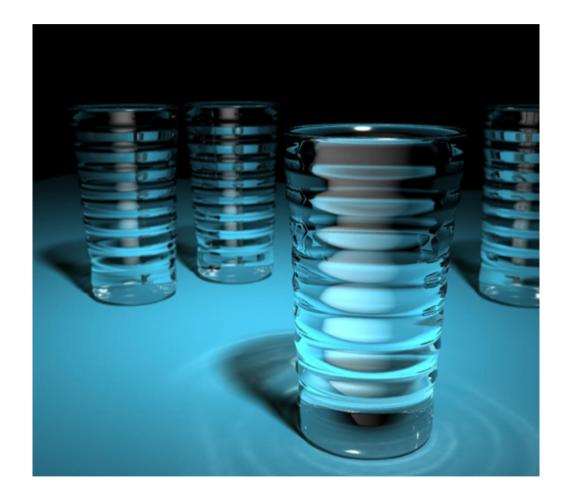
- images
 - design
 - advertising
 - art



virtual reality / immersive displays

http://www.alias.com/eng/etc/fakeorfoto/quiz.html





Real or CG?

This Course

we cover

- basic algorithms for
 - rendering displaying models
 - (modeling generating models)
 - (animation generating motion)
- programming in OpenGL, C++
- we do not cover
- art/design issues
- commercial software packages

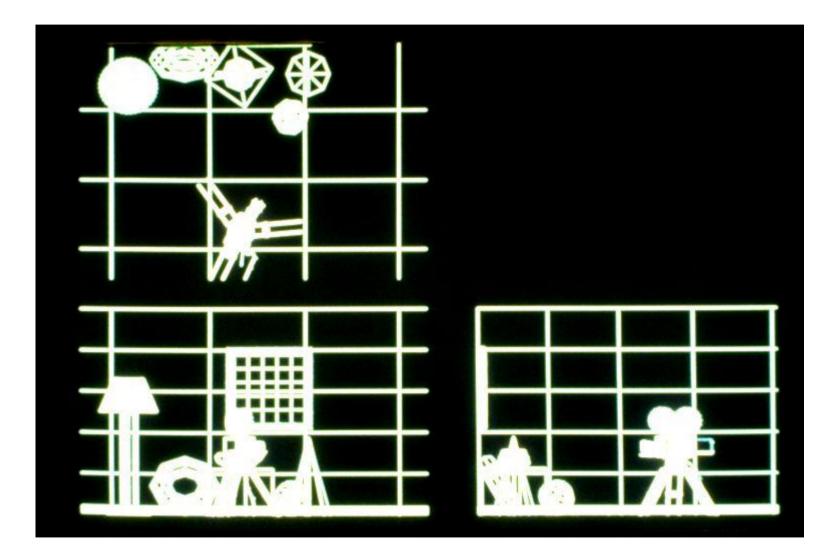
Other Graphics Courses

- CPSC 424: Geometric Modeling
- CPSC 426: Computer Animation
- CPSC 514: Image-based Modeling and Rendering
- CPSC 526: Computer Animation
- CPSC 533A: Digital Geometry
- CPSC 533B: Animation Physics
- CPSC 533C: Information Visualization

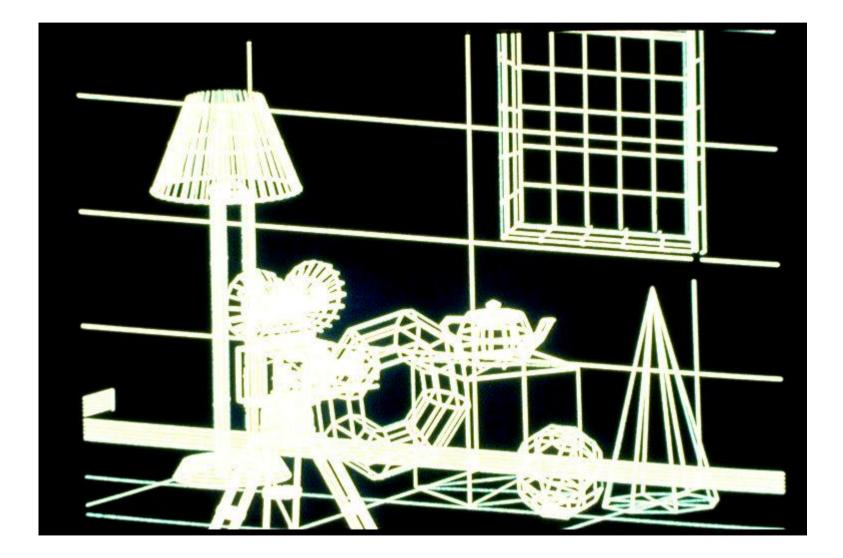
Rendering

- creating images from models
 - geometric objects
 - Ines, polygons, curves, curved surfaces
 - camera
 - pinhole camera, lens systems, orthogonal
 - shading
 - light interacting with material
- Pixar Shutterbug series
 - Williams and Siegel using Renderman, 1990
 - www.siggraph.org/education/ materials/HyperGraph/shutbug.htm

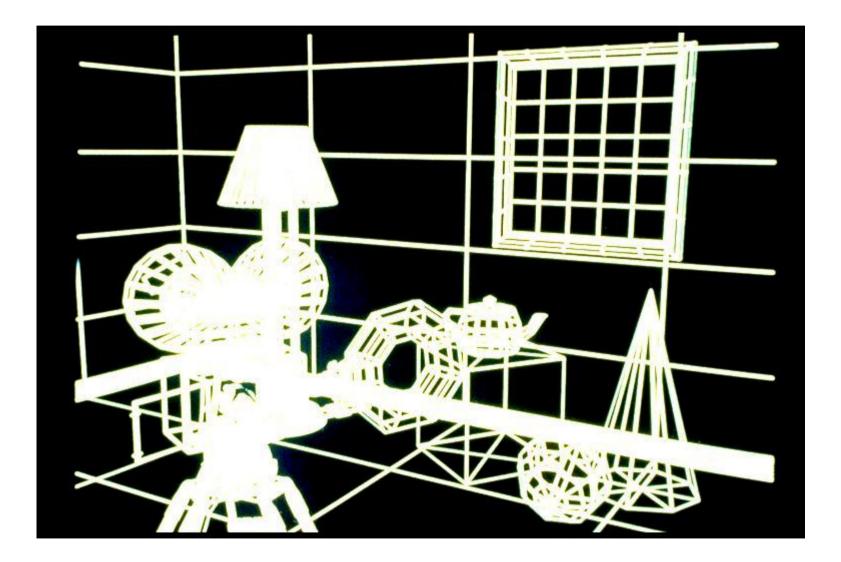
Modelling Transformation: Object Placement



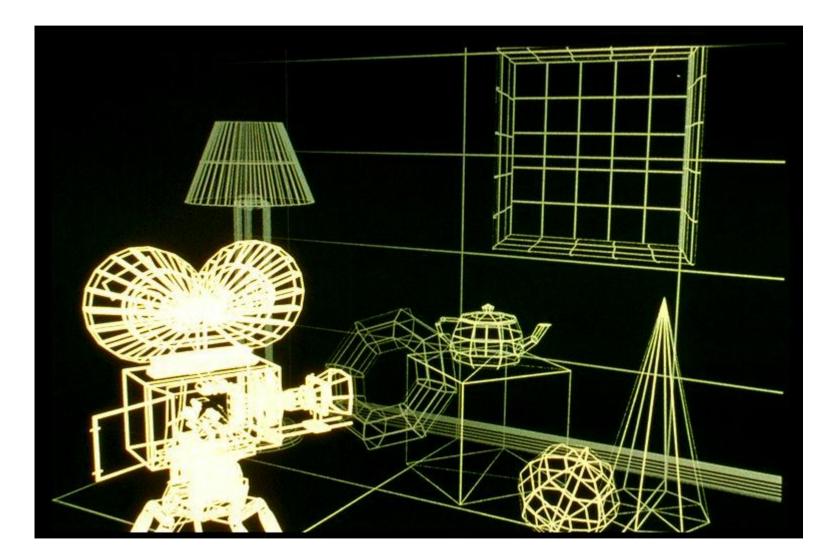
Viewing Transformation: Camera Placement



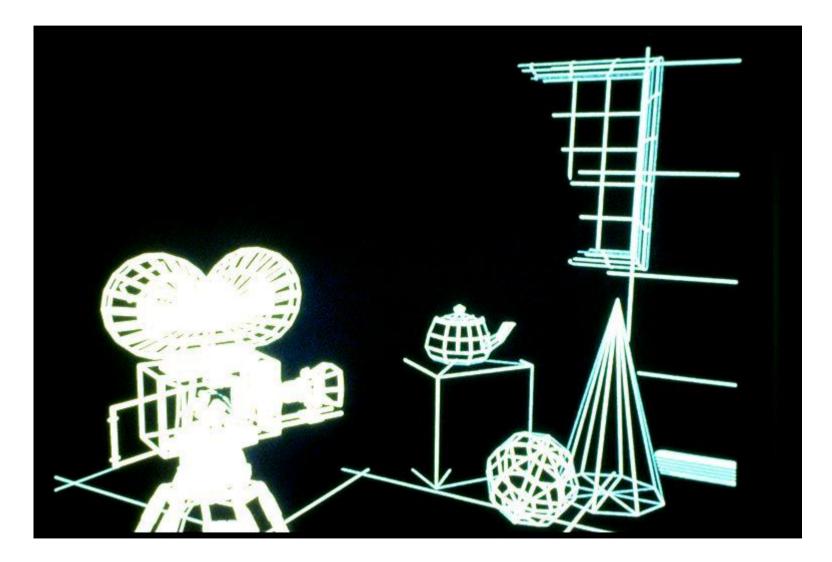
Perspective Projection



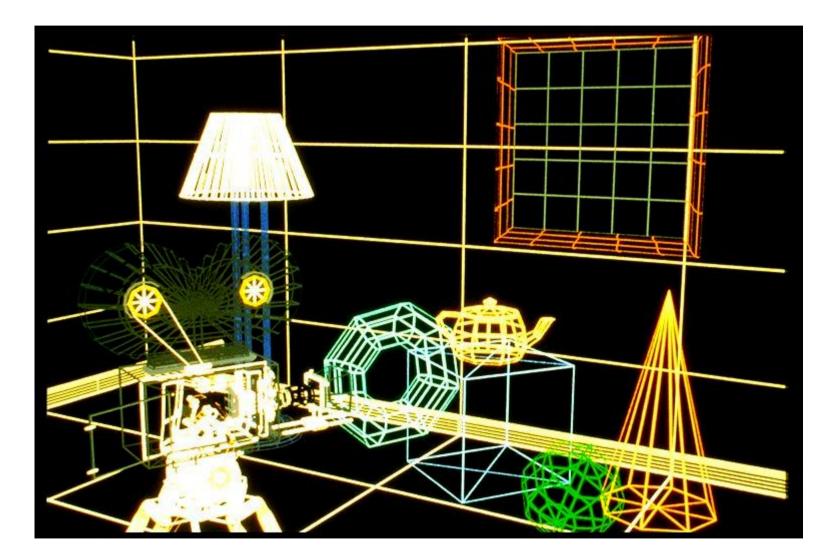
Depth Cueing



Depth Clipping



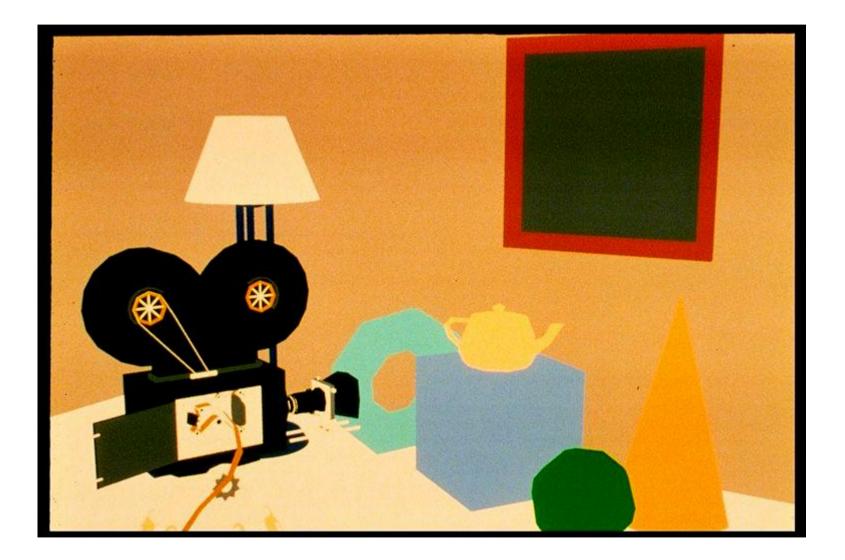
Colored Wireframes



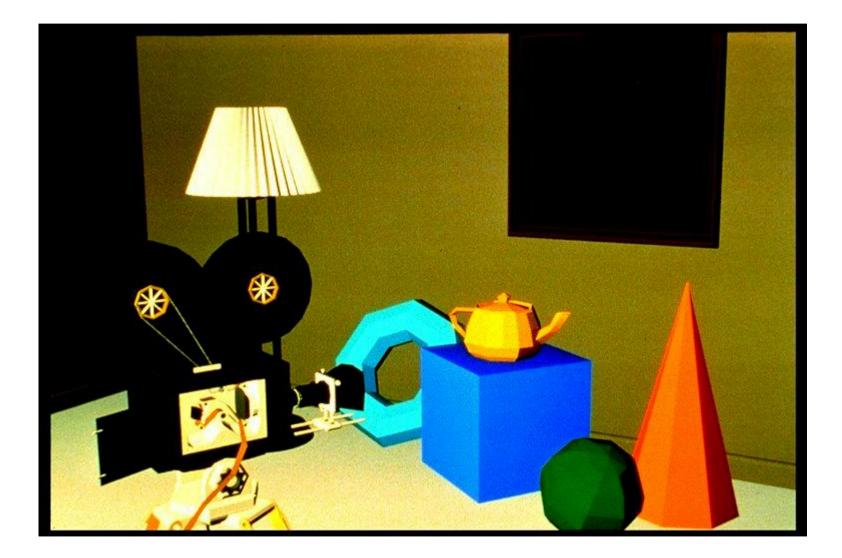
Hidden Line Removal



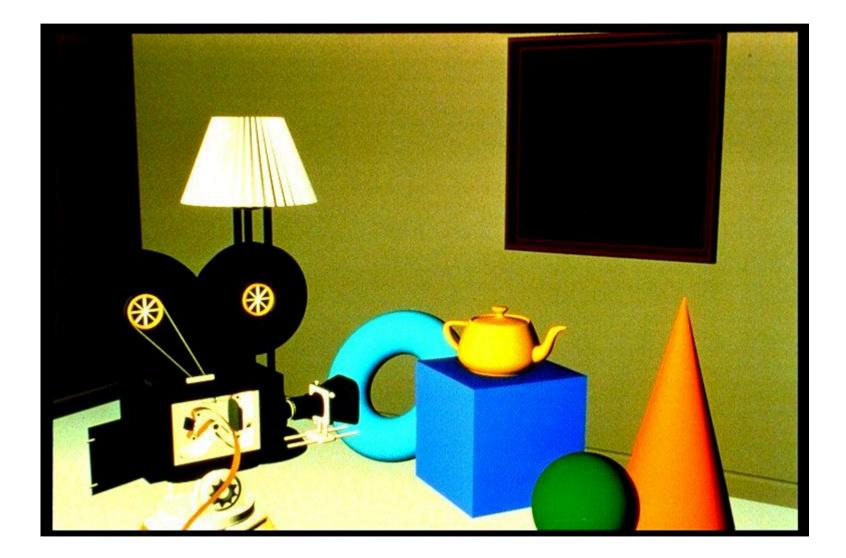
Hidden Surface Removal



Per-Polygon Shading



Gouraud Shading



Specular Reflection



Phong Shading

Curved Surfaces



Complex Lighting and Shading

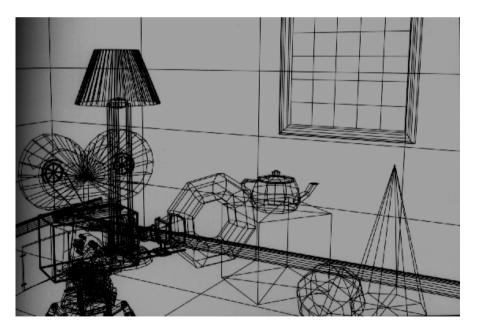
Texture Mapping

Displacement Mapping

Reflection Mapping

Modelling

- generating models
 - lines, curves, polygons, smooth surfaces
 - digital geometry



Animation

- generating motion
 - interpolating between frames, states

Math Review

Reading

FCG Chapter 2: Miscellaneous Math

- except for 2.11 (covered later)
- skim 2.2 (sets and maps), 2.3 (quadratic eqns)
- important: 2.3 (trig), 2.4 (vectors), 2.5-6 (lines)
 2.10 (linear interpolation)

skip 2.5.1, 2.5.3, 2.7.1, 2.7.3, 2.8, 2.9

- FCG Chapter 4.1-4.25: Linear Algebra
 - skim 4.1 (determinants)
 - important: 4.2.1-4.2.2, 4.2.5 (matrices)
 - skip 4.2.3-4, 4.2.6-7 (matrix numerical analysis)

Textbook Errata

list at <u>http://www.cs.utah.edu/~shirley/fcg/errata</u>

p 29, 32, 39 have potential to confuse

Notation: Scalars, Vectors, Matrices

a

- scalar
 - (lower case, italic)
- vector
 - (lower case, bold)
- matrix
 - (upper case, bold)

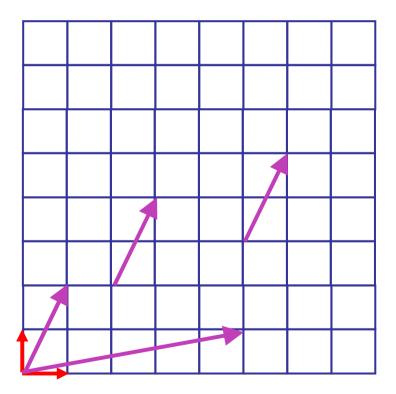
$$\mathbf{a} = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Vectors

arrow: length and direction

- oriented segment in nD space
- offset / displacement
 location if given origin



Column vs. Row Vectors

• row vectors
$$\mathbf{a}_{row} = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}$$

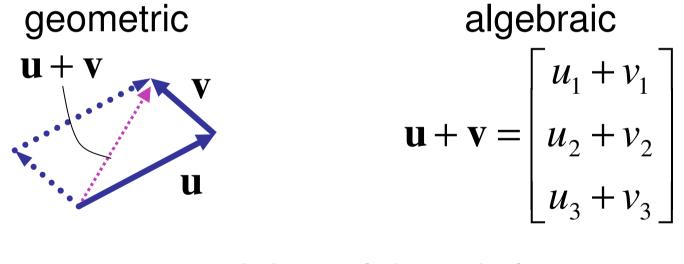
• column vectors $\mathbf{a}_{col} = \begin{bmatrix} a_1 \\ a_2 \\ \dots \\ a_n \end{bmatrix}$

switch back and forth with transpose

$$\mathbf{a}_{col}^{T} = \mathbf{a}_{row}$$

Vector-Vector Addition

- add: vector + vector = vector
- parallelogram rule
 - tail to head, complete the triangle

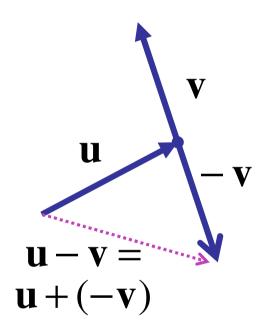


examples:

(3,2) + (6,4) = (9,6)(2,5,1) + (3,1,-1) = (5,6,0)

Vector-Vector Subtraction

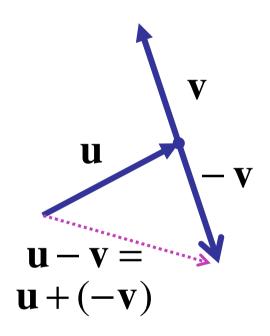
subtract: vector - vector = vector



• vector = vector $\mathbf{u} - \mathbf{v} = \begin{bmatrix} u_1 - v_1 \\ u_2 - v_2 \\ u_3 - v_3 \end{bmatrix}$ (3,2) - (6,4) = (-3,-2) (2,5,1) - (3,1,-1) = (-1,4,0)

Vector-Vector Subtraction

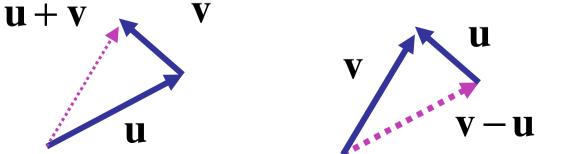
subtract: vector - vector = vector



$$\mathbf{u} - \mathbf{v} = \begin{bmatrix} u_1 - v_1 \\ u_2 - v_2 \\ u_3 - v_3 \end{bmatrix}$$

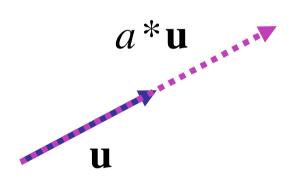
(3,2) - (6,4) = (-3,-2)
(2,5,1) - (3,1,-1) = (-1,4,0)

argument reversal



Scalar-Vector Multiplication

- multiply: scalar * vector = vector
 - vector is scaled



$$a * \mathbf{u} = (a * u_1, a * u_2, a * u_3)$$

2*(3,2) = (6,4).5*(2,5,1) = (1,2.5,.5)

Vector-Vector Multiplication

- multiply: vector * vector = scalar
- dot product, aka inner product $\mathbf{u} \bullet \mathbf{v}$

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \bullet \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = (u_1 * v_1) + (u_1 * v_2) + (u_3 * v_3)$$

Vector-Vector Multiplication

- multiply: vector * vector = scalar
- dot product, aka inner product $\mathbf{u} \bullet \mathbf{v}$

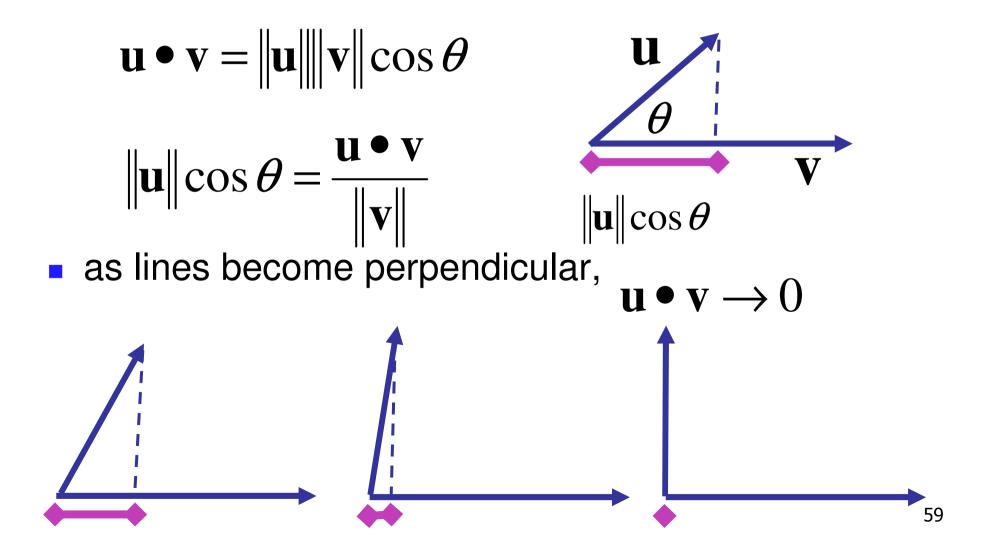
$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \bullet \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = (u_1 * v_1) + (u_1 * v_2) + (u_3 * v_3)$$
$$\mathbf{u} \bullet \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta$$

- geometric interpretation
 - Iengths, angles
 - can find angle between two vectors

$$\mathbf{u}$$
 $\mathbf{\theta}$ \mathbf{V}

Dot Product Geometry

can find length of projection of u onto v



Dot Product Example

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \bullet \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = (u_1 * v_1) + (u_1 * v_2) + (u_3 * v_3)$$

$$\begin{bmatrix} 6 \\ 1 \\ 2 \end{bmatrix} \bullet \begin{bmatrix} 1 \\ 7 \\ 3 \end{bmatrix} = (6*1) + (1*7) + (2*3) = 6 + 7 + 6 = 19$$

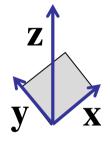
Vector-Vector Multiplication, The Sequel

- multiply: vector * vector = vector
- cross product
 - algebraic
 - geometric
 - $\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta$
 - ||a×b|| parallelogram area
 - a×b perpendicular to parallelogram

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \times \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{bmatrix}$$

RHS vs LHS Coordinate Systems

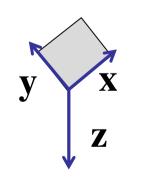
right-handed coordinate system convention



right hand rule: index finger x, second finger y; right thumb points up

 $\mathbf{z} = \mathbf{x} \times \mathbf{y}$

Ieft-handed coordinate system



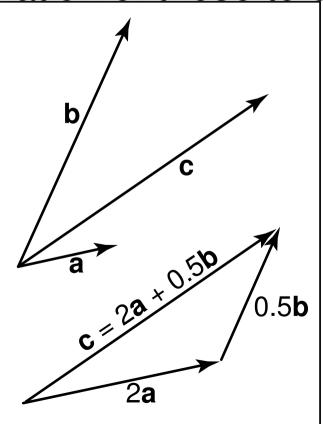
left hand rule: index finger x, second finger y; left thumb points down

$$\mathbf{z} = \mathbf{x} \times \mathbf{y}$$

Basis Vectors

- take any two vectors that are linearly independent (nonzero and nonparallel)
 - any other vector:

$$\mathbf{c} = w_1 \mathbf{a} + w_2 \mathbf{b}$$

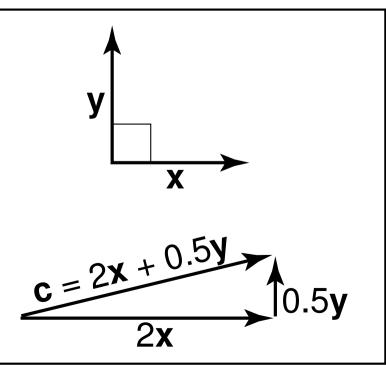


Orthonormal Basis Vectors

- if basis vectors are orthonormal (orthogonal (mutually perpendicular) and unit length)
 - we have Cartesian coordinate system
 - familiar Pythagorean definition of distance

orthonormal algebraic properties

$$\|\mathbf{x}\| = \|\mathbf{y}\| = 1,$$
$$\mathbf{x} \bullet \mathbf{y} = 0$$

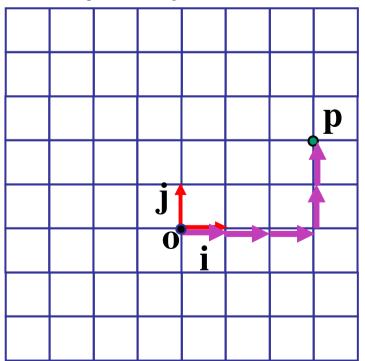


Basis Vectors and Origins

- coordinate system: just basis vectors
 - can only specify offset: vectors

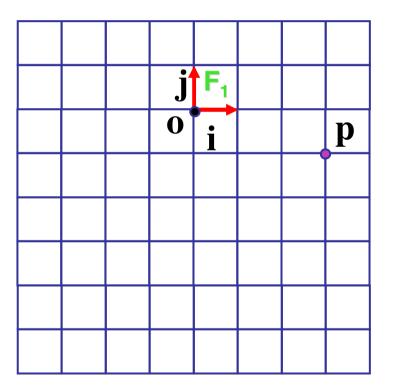
coordinate frame: basis vectors and origin

can specify location as well as offset: points

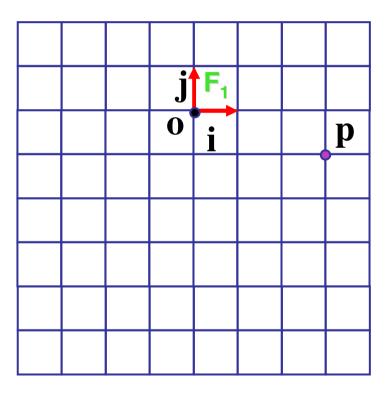


$$\mathbf{p} = \mathbf{o} + x\mathbf{i} + y\mathbf{j}$$

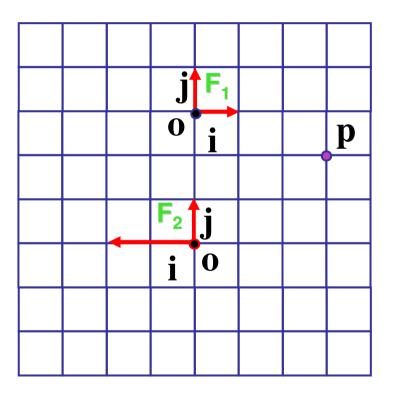
F₁



$$\mathbf{p} = \mathbf{o} + x\mathbf{i} + y\mathbf{j}$$



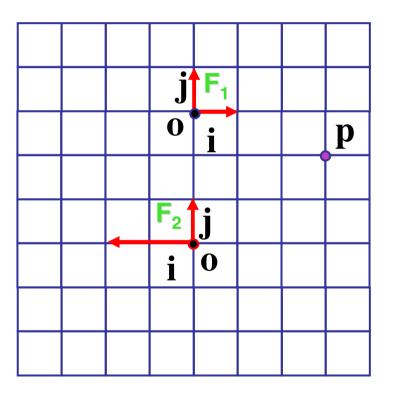
$$\mathbf{p} = \mathbf{o} + x\mathbf{i} + y\mathbf{j}$$



$$\mathbf{p} = \mathbf{o} + x\mathbf{i} + y\mathbf{j}$$

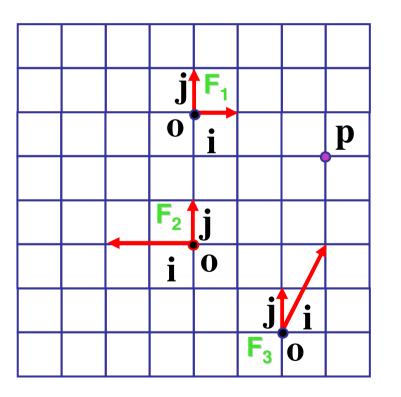
F₂

68



$$\mathbf{p} = \mathbf{o} + x\mathbf{i} + y\mathbf{j}$$

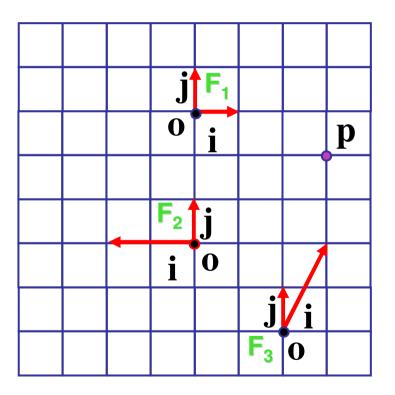
$$F_2 p = (-1.5,2)$$



$$\mathbf{p} = \mathbf{o} + x\mathbf{i} + y\mathbf{j}$$

$$F_1$$
 p = (3,-1)

70



$$\mathbf{p} = \mathbf{o} + x\mathbf{i} + y\mathbf{j}$$

$$F_1$$
 p = (3,-1)

F₃ **p** = (1,2)

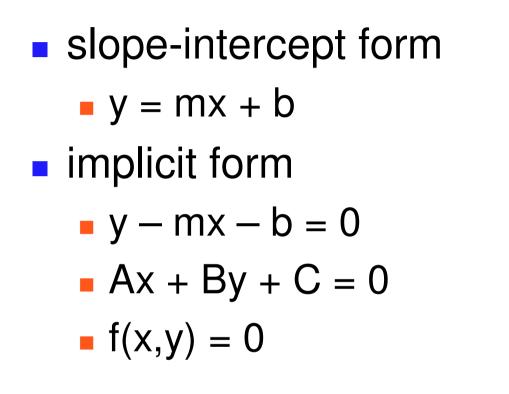
Named Coordinate Frames

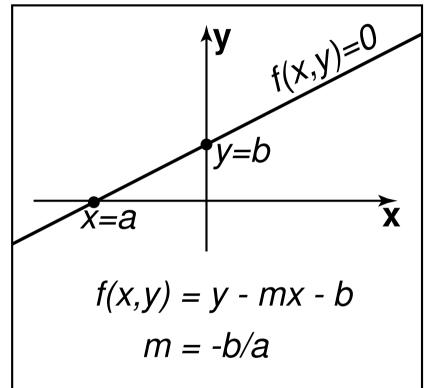
- origin and basis vectors $\mathbf{p} = \mathbf{o} + a\mathbf{x} + b\mathbf{y} + c\mathbf{z}$
- pick canonical frame of reference
 - then don't have to store origin, basis vectors

• just
$$\mathbf{p} = (a, b, c)$$

- convention: Cartesian orthonormal one on previous slide
- handy to specify others as needed
 - airplane nose, looking over your shoulder, ...
 - really common ones given names in CG
 - object, world, camera, screen, ...

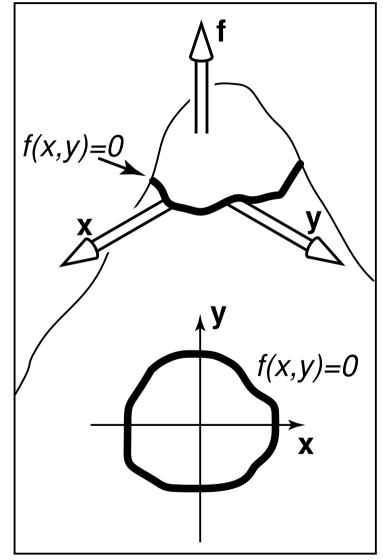
Lines





Implicit Functions

- find where function is 0
 plug in (x,y), check if
 0: on line
 < 0: inside
 - > 0: outside
- analogy: terrain
 - sea level: f=0
 - altitude: function value
 - topo map: equal-value contours (level sets)



Implicit Circles

•
$$f(x, y) = (x - x_c)^2 + (y - y_c)^2 - r^2$$

circle is points (x,y) where f(x,y) = 0

•
$$p = (x, y), c = (x_c, y_c) : (\mathbf{p} - \mathbf{c}) \bullet (\mathbf{p} - \mathbf{c}) - r^2 = 0$$

points p on circle have property that vector from c to p dotted with itself has value r²

$$||\mathbf{p} - \mathbf{c}||^2 - r^2 = 0$$

points points p on the circle have property that squared distance from c to p is r²

$$||\mathbf{p} - \mathbf{c}|| - r = 0$$

points p on circle are those a distance r from center point c
⁷⁵

Parametric Curves

parameter: index that changes continuously

- (x,y): point on curve
- t: parameter
- vector form

•
$$\mathbf{p} = f(t)$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} g(t) \\ h(t) \end{bmatrix}$$

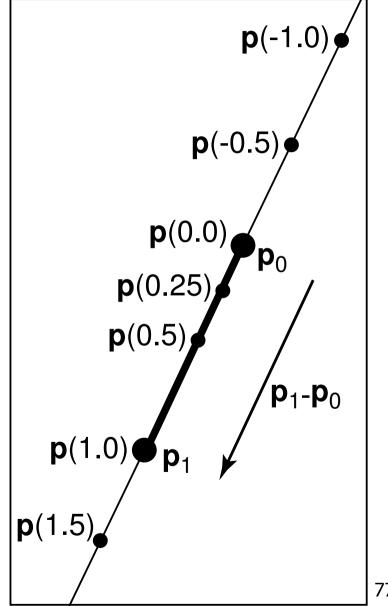
2D Parametric Lines

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x_0 + t(x_1 - x_0) \\ y_0 + t(y_1 - y_0) \end{bmatrix}$$

•
$$\mathbf{p}(t) = \mathbf{p}_0 + t(\mathbf{p}_1 - \mathbf{p}_0)$$

• $\mathbf{p}(t) = \mathbf{o} + t(\mathbf{d})$

start at point **p**₀. go towards \mathbf{p}_1 , according to parameter t **p**(0) = \mathbf{p}_0 , $\mathbf{p}(1) = \mathbf{p}_1$



Linear Interpolation

parametric line is example of general concept

$$\mathbf{p}(t) = \mathbf{p}_0 + t(\mathbf{p}_1 - \mathbf{p}_0)$$

interpolation

- **p** goes through **a** at t = 0
- **p** goes through **b** at *t* = 1

linear

• weights t, (1-t) are linear polynomials in t

Matrix-Matrix Addition

add: matrix + matrix = matrix

$$\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} + \begin{bmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{bmatrix} = \begin{bmatrix} n_{11} + m_{11} & n_{12} + m_{12} \\ n_{21} + m_{21} & n_{22} + m_{22} \end{bmatrix}$$

example

$$\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} + \begin{bmatrix} -2 & 5 \\ 7 & 1 \end{bmatrix} = \begin{bmatrix} 1+(-2) & 3+5 \\ 2+7 & 4+1 \end{bmatrix} = \begin{bmatrix} -1 & 8 \\ 9 & 5 \end{bmatrix}$$

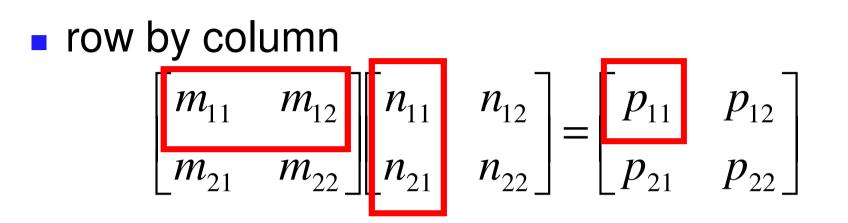
Scalar-Matrix Multiplication

multiply: scalar * matrix = matrix

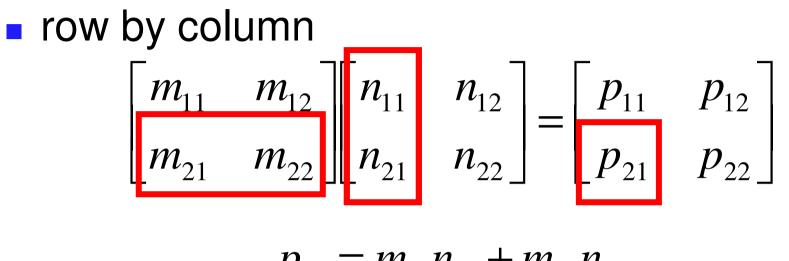
$$a\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} = \begin{bmatrix} a * m_{11} & a * m_{12} \\ a * m_{21} & a * m_{22} \end{bmatrix}$$

example

$$3\begin{bmatrix} 2 & 4 \\ 1 & 5 \end{bmatrix} = \begin{bmatrix} 3*2 & 3*4 \\ 3*1 & 3*5 \end{bmatrix} = \begin{bmatrix} 6 & 12 \\ 3 & 15 \end{bmatrix}$$



 $p_{11} = m_{11}n_{11} + m_{12}n_{21}$



 $p_{11} = m_{11}n_{11} + m_{12}n_{21}$ $p_{21} = m_{21}n_{11} + m_{22}n_{21}$

• row by column $\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \begin{bmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{bmatrix} \begin{bmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix}$

$$p_{11} = m_{11}n_{11} + m_{12}n_{21}$$
$$p_{21} = m_{21}n_{11} + m_{22}n_{21}$$
$$p_{12} = m_{11}n_{12} + m_{12}n_{22}$$

• row by column $\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \begin{bmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix}$

$$p_{11} = m_{11}n_{11} + m_{12}n_{21}$$

$$p_{21} = m_{21}n_{11} + m_{22}n_{21}$$

$$p_{12} = m_{11}n_{12} + m_{12}n_{22}$$

$$p_{22} = m_{21}n_{12} + m_{22}n_{22}$$

• row by column $\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \begin{bmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix}$

$$p_{11} = m_{11}n_{11} + m_{12}n_{21}$$

$$p_{21} = m_{21}n_{11} + m_{22}n_{21}$$

$$p_{12} = m_{11}n_{12} + m_{12}n_{22}$$

$$p_{22} = m_{21}n_{12} + m_{22}n_{22}$$
noncommutative: **AB** != **BA**

r

Matrix Multiplication

can only multiply if number of left rows = number of right cols

• legal
$$\begin{bmatrix} a & b & c \\ e & f & g \end{bmatrix} \begin{bmatrix} h & i \\ j & k \\ l & m \end{bmatrix}$$
• undefined

$$\begin{bmatrix} a & b & c \\ & & & \\ e & f & g \\ o & p & q \end{bmatrix} \begin{bmatrix} h & i \\ j & k \end{bmatrix}$$

Matrix-Vector Multiplication

points as column vectors: postmultiply

$$\begin{bmatrix} x' \\ y' \\ z' \\ h' \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ h \end{bmatrix}$$

points as row vectors: premultiply

$$\begin{bmatrix} x' & y' & z' & h' \end{bmatrix} = \begin{bmatrix} x & y & z & h \end{bmatrix} \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{bmatrix}^{T} \mathbf{p}^{T} = \mathbf{p}^{T} \mathbf{M}^{T}$$

 $\mathbf{p'} = \mathbf{M}\mathbf{p}$

Matrices

transpose	$\begin{bmatrix} m_{11} & m_{12} \end{bmatrix}$	<i>m</i> ₁₃	m_{14} $\begin{bmatrix} T \\ m_{11} \end{bmatrix}$	m_{21} m_{31} m_{41}
•	m_{21} m_{22}	<i>m</i> ₂₃	$m_{24} = m_{12}$	m_{22} m_{32} m_{42}
	m_{31} m_{32}	<i>m</i> ₃₃	m_{34} m_{13}	m_{23} m_{33} m_{43}
	$[m_{41} m_{42}]$	m_{43}	m_{44} $[m_{14}]$	m_{24} m_{34} m_{44}
identity	$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$	0		
	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$	0		
	0 0 1	0		
		1		

• inverse $AA^{-1} = I$

not all matrices are invertible

Matrices and Linear Systems

linear system of n equations, n unknowns

$$3x + 7y + 2z = 4$$

$$2x - 4y - 3z = -1$$

$$5x + 2y + z = 1$$

matrix form Ax=b

$$\begin{bmatrix} 3 & 7 & 2 \\ 2 & -4 & -3 \\ 5 & 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \\ -1 \\ -1 \end{bmatrix}$$

Rendering Pipeline

Reading

- RB Chap. Introduction to OpenGL
- RB Chap. State Management and Drawing Geometric Objects
- RB Appendix Basics of GLUT

(Basics of Aux in v 1.1)

Rendering

goal

- transform computer models into images
- may or may not be photo-realistic
- interactive rendering
 - fast, but limited quality
 - roughly follows a fixed patterns of operations

rendering pipeline

- offline rendering
 - ray-tracing
 - global illumination

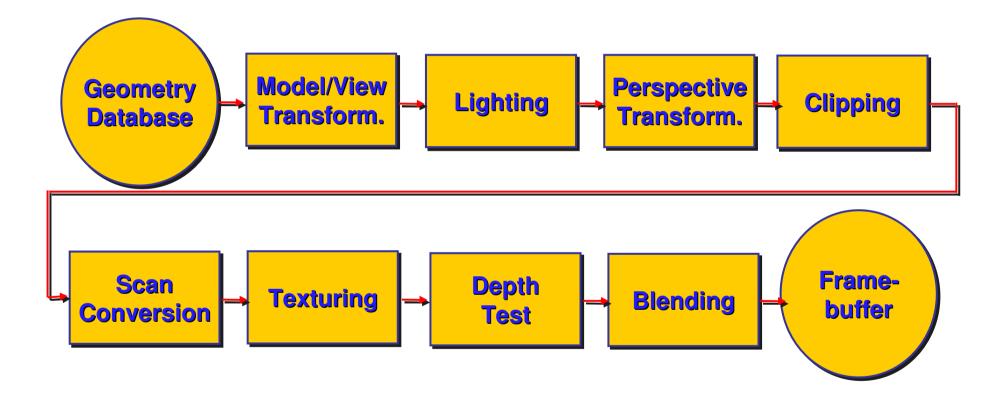
Rendering

- tasks that need to be performed (in no particular order):
 - project all 3D geometry onto the image plane
 - geometric transformations
 - determine which primitives or parts of primitives are visible
 - hidden surface removal
 - determine which pixels a geometric primitive covers
 - scan conversion
 - compute the color of every visible surface point
 - lighting, shading, texture mapping

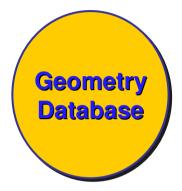
Rendering Pipeline

- what is the pipeline?
 - abstract model for sequence of operations to transform geometric model into digital image
 - abstraction of the way graphics hardware works
 - underlying model for application programming interfaces (APIs) that allow programming of graphics hardware
 - OpenGL
 - Direct 3D
- actual implementation details of rendering pipeline will vary

Rendering Pipeline

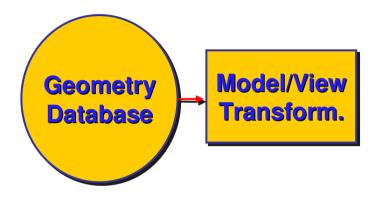


Geometry Database



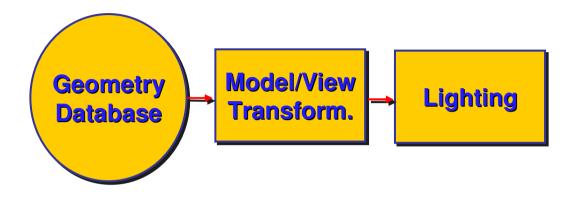
- geometry database
 - application-specific data structure for holding geometric information
 - depends on specific needs of application
 - triangle soup, points, mesh with connectivity information, curved surface

Model/View Transformation



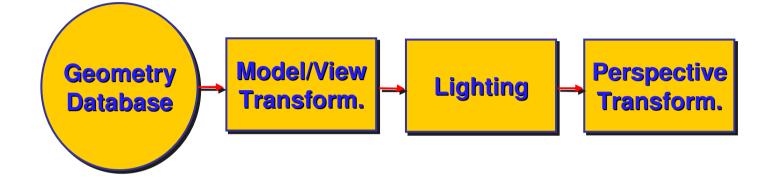
- modeling transformation
 - map all geometric objects from local coordinate system into world coordinates
- viewing transformation
 - map all geometry from world coordinates into camera coordinates

Lighting



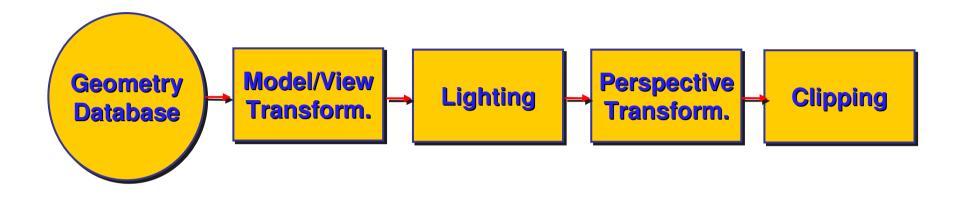
- lighting
 - compute brightness based on property of material and light position(s)
 - computation is performed *per-vertex*

Perspective Transformation

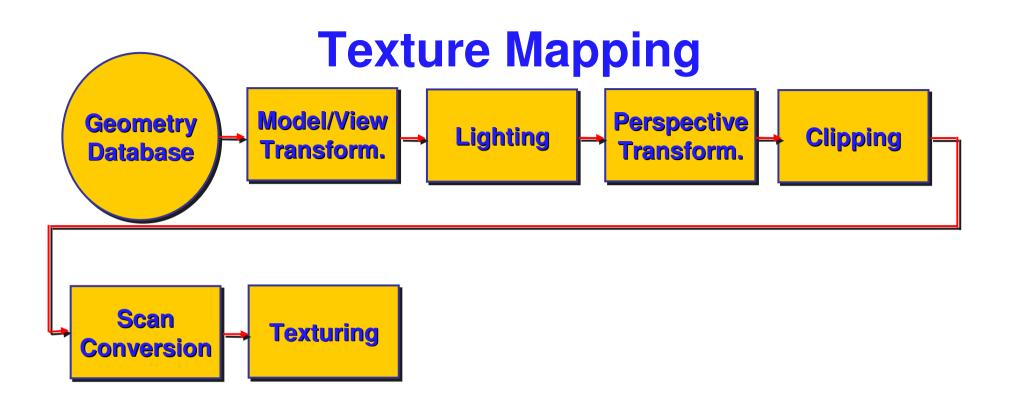


- perspective transformation
 - projecting the geometry onto the image plane
 - projective transformations and model/view transformations can all be expressed with 4x4 matrix operations

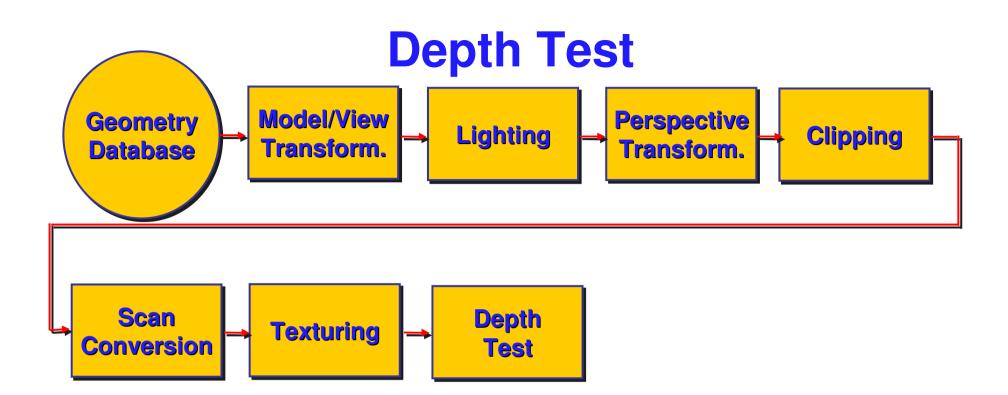
Clipping



- clipping
 - removal of parts of the geometry that fall outside the visible screen or window region
 - may require *re-tessellation* of geometry



- texture mapping
- "gluing images onto geometry"
- color of every fragment is altered by looking up a new color value from an image



depth test

- remove parts of geometry hidden behind other geometric objects
- perform on every individual fragment
 - other approaches (later)

Pipeline Advantages

- modularity: logical separation of different components
- easy to parallelize
 - earlier stages can already work on new data while later stages still work with previous data
- similar to pipelining in modern CPUs
- but much more aggressive parallelization possible (special purpose hardware!)
- important for hardware implementations
- only local knowledge of the scene is necessary

Pipeline Disadvantages

- Iimited flexibility
- some algorithms would require different ordering of pipeline stages
- hard to achieve while still preserving compatibility
- only local knowledge of scene is available
 - shadows
- global illumination

OpenGL (briefly)

OpenGL

- started in 1989 by Kurt Akeley
 - based on IRIS_GL by SGI
- API to graphics hardware
- designed to exploit hardware optimized for display and manipulation of 3D graphics
- implemented on many different platforms
- Iow level, powerful flexible
- pipeline processing
 - set state as needed

Graphics State

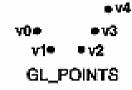
set the state once, remains until overwritten

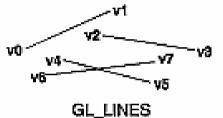
- glColor3f(1.0, 1.0, 0.0) \rightarrow set color to yellow
- glSetClearColor(0.0, 0.0, 0.2) → dark blue bg
- glEnable(LIGHT0) → turn on light
- glEnable(GL_DEPTH_TEST) → hidden surf.

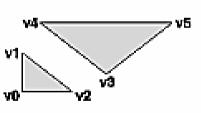
Geometry Pipeline

- tell it how to interpret geometry
 - glBegin(<mode of geometric primitives>)
 - mode = GL_TRIANGLE, GL_POLYGON, etc.
- feed it vertices
 - glVertex3f(-1.0, 0.0, -1.0)
 - glVertex3f(1.0, 0.0, -1.0)
 - glVertex3f(0.0, 1.0, -1.0)
- tell it you're done
 - glEnd()

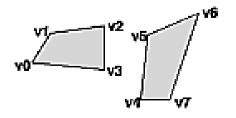
Open GL: Geometric Primitives



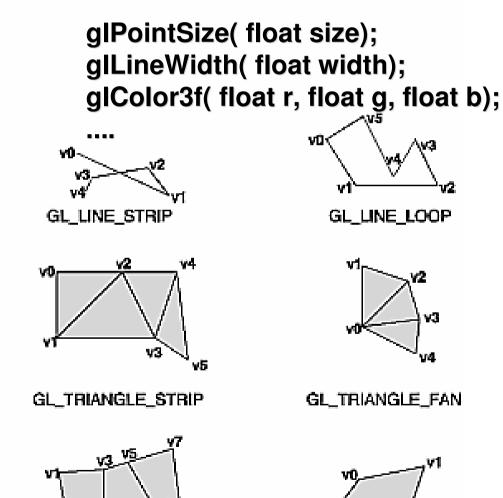




GL_TRIANGLES



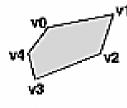
GL_QUADS



v4 V6

¥2

GL_QUAD_STRIP



GL_POLYGON

Code Sample

```
void display()
Ł
  glClearColor(0.0, 0.0, 0.0, 0.0);
  glClear(GL COLOR BUFFER BIT);
  glColor3f(0.0, 1.0, 0.0);
  glBegin(GL_POLYGON);
    glVertex3f(0.25, 0.25, -0.5);
    glVertex3f(0.75, 0.25, -0.5);
    glVertex3f(0.75, 0.75, -0.5);
    glVertex3f(0.25, 0.75, -0.5);
  glEnd();
  glFlush();
more OpenGL as course continues
```


GLUT: OpenGL Utility Toolkit

- developed by Mark Kilgard (also from SGI)
- simple, portable window manager
 - opening windows
 - handling graphics contexts
 - handling input with callbacks
 - keyboard, mouse, window reshape events
 - timing
 - idle processing, idle events
- designed for small-medium size applications
- distributed as binaries
 - free, but not open source

GLUT Draw World

return 0; // never reached

Event-Driven Programming

- main loop not under your control
 - vs. procedural
- control flow through event callbacks
 - redraw the window now
 - key was pressed
 - mouse moved
- callback functions called from main loop when events occur
 - mouse/keyboard state setting vs. redrawing

GLUT Callback Functions

```
// you supply these kind of functions
void reshape(int w, int h);
void keyboard(unsigned char key, int x, int y);
void mouse(int but, int state, int x, int y);
void idle();
void display();
```

```
// register them with glut
glutReshapeFunc(reshape);
glutKeyboardFunc(keyboard);
glutMouseFunc(mouse);
glutIdleFunc(idle);
glutDisplayFunc(display);
```

```
void glutDisplayFunc (void (*func)(void));
void glutKeyboardFunc (void (*func)(unsigned char key, int x, int y));
void glutIdleFunc (void (*func)());
void glutReshapeFunc (void (*func)(int width, int height));
```

Display Function

```
void DrawWorld() {
    glMatrixMode(GL_PROJECTION);
    glLoadIdentity();
    glMatrixMode(GL_MODELVIEW);
    glLoadIdentity();
    glClear(GL_COLOR_BUFFER_BIT);
    angle += 0.05; //animation
    glRotatef(angle,0,0,1); //animation
    ... // redraw triangle in new position
    glutSwapBuffers();
```

- directly update value of angle variable
 - so, why doesn't it spin?

}

only called in response to window/input event!

Idle Function

```
void Idle() {
    angle += 0.05;
    glutPostRedisplay();
}
```

- called from main loop when no user input
- should return control to main loop quickly
 - update value of angle variable here
 - then request redraw event from GLUT
 - draw function will be called next time through
- continues to rotate even when no user action

Keyboard/Mouse Callbacks

- do minimal work
- request redraw for display
- example: keypress triggering animation
 - do not create loop in input callback!
 - what if user hits another key during animation?
 - shared/global variables to keep track of state
 - display function acts on current variable value

Labs

Thursday Lab

- Iabs start Thursday
 - 11-12: morning not ideal, it's before lecture
 - 3-4,4-5: better, try to attend afternoon if possible
- project 0
 - make sure you can compile OpenGL/GLUT
 - useful to test home computing environment
 - template: spin around obj files
 - todo: change rotation axis
 - do not hand in, not graded
 - http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005/a0
- project 1
 - transformations
 - more on Thursday after transformations lecture

Remote Graphics

- OpenGL does not work well remotely
 - very slow
- only one user can use graphics at a time
 - current X server doesn't give priority to console, just does first come first served
 - problem: FCFS policy = confusion/chaos
- solution: console user gets priority
 - only use graphics remotely if nobody else logged on
 - with 'who' command, ":0" is console person
 - stop using graphics if asked by console user via email
 - or console user can reboot machine out from under you