URC
University of British Columbia CPSC 314 Computer Graphics May-June 2005
Tamara Munzner
:---:
Week 1, Tue May 10
http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005

Expectations

- hard course!
- heavy programming and heavy math
- fun course!
- graphics programming addictive, create great demos
- programming prereq
- CPSC 216 (Program Design and Data Structures)
- course language is C++/C
- math prereq
- MATH 200 (Calculus III)
- MATH 221/223 (Matrix Algebra/Linear Algebra)

Course Structure

- 45% programming projects
- 9% project 1 (building beasties with cubes and math)
- 9\% project 2 (flying)
- 9% project 3 (shaded terrain)
- 18% project 4 (create your own graphics game)
- 25% final
- 15% midterm (week 4 , Tue $5 / 31$)
- 15% written assignments
- 5% each HW $1 / 2 / 3$
- programming projects and homeworks synchronized

Programming Projects

- structure
- C++, Linux
- OK to cross-platform develop on Windows

Late Work

- 3 grace days
- for unforeseen circumstances
- strong recommendation: don't use early in term
- handing in late uses up automatically unless you tell us
- OpenGL graphics library
- GLUT for platform-independent windows/UI
- face to face grading in lab
- Hall of Fame
- project 1: building beasties
- previous years: elephants, birds, poodles
- otherwise: 25% per 24 hours
- no work accepted after solutions handed out
- exception: severe illness or crisis, as per UBC rules
- let me know ASAP (in person or email)
- must also turn in form with documentation
http://www.ugrad.cs.ubc.ca/~cs314/Vjan2005/illness.html
- project 4: create your own graphics game

Regrading

- to request assignment or exam regrade
- must submit detailed written explanation of why you think the grader was incorrect for the particular problem that you are disputing
- I may regrade entire assignment
- thus even if I agree with your original request, your score may end up higher or lower

Course Information

- course web page is main resource
- http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005
- updated often, reload frequently
- newsgroup is ubc.courses.cpsc. 414
- note old course number still used
- readable on or off campus
- (no WebCT)

Labs

- attend two labs per week, 3 sessions each
- Tue/Thu 11-12, 3-4, 4-5
- Thursday afternoon better than Thu morning
- Tuesdays: example problems in spirit of written assignments and exams
- Thursdays: help with programming projects
- no deliverables
- strongly recommend that you attend

Teaching Staff

- instructor: Dr. Munzner
- tmm@cs.ubc.ca
- office hrs in CICSR 011
. Mon 4:30-5:30
- TAs: Warren Cheung, Greg Kempe
- wcheung@cs.ubc.ca
- kempe@cs.ubc.ca
- use newsgroup not email for all questions that other students might care about

Learning OpenGL

- this is a graphics course using OpenGL
- not a course *on* OpenGL
- upper-level class: learning APIs mostly on your own
- only minimal lecture coverage
- basics, some of the tricky bits
- OpenGL Red Book
- many tutorial sites on the web
- nehe.gamedev.net

Plagiarism and Cheating

- don't cheat, I will prosecute
- insult to your fellow students and to me
- programming and assignment writeups must be individual work
- exception: project 3 can be team of two
- can discuss ideas, browse Web
- but cannot just copy code or answers
- you must be able to explain algorithms during face-toface demo
- or no credit for that part of assignment, possible prosecution

Citation

- cite all sources of information
- web sites, study group members, books
- README for programming projects
- end of writeup for written assignments
- http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005/policies.htm|\#plag

What is Computer Graphics?

- create or manipulate images with computer - this course: algorithms for image generation

What is CG used for?

- graphical user interfaces
- modeling systems
- applications

- simulation \& visualization

Page 4

This Course

- we cover
- basic algorithms for
- rendering - displaying models
- (modeling - generating models)
- (animation - generating motion)
- programming in OpenGL, C++
- we do not cover
- art/design issues
- commercial software packages

Other Graphics Courses

- CPSC 424: Geometric Modeling
- CPSC 426: Computer Animation
- CPSC 514: Image-based Modeling and Rendering
- CPSC 526: Computer Animation
- CPSC 533A: Digital Geometry
- CPSC 533B: Animation Physics
- CPSC 533C: Information Visualization

Page 7

Animation

- generating motion
- interpolating between frames, states

Reading

- FCG Chapter 2: Miscellaneous Math
- except for 2.11 (covered later)
- skim 2.2 (sets and maps), 2.3 (quadratic eqns)
- important: 2.3 (trig), 2.4 (vectors), 2.5-6 (lines) 2.10 (linear interpolation)
- skip 2.5.1, 2.5.3, 2.7.1, 2.7.3, 2.8, 2.9
- FCG Chapter 4.1-4.25: Linear Algebra
- skim 4.1 (determinants)
- important: 4.2.1-4.2.2, 4.2 .5 (matrices)
- skip 4.2.3-4, 4.2.6-7 (matrix numerical analysis)

Textbook Errata

- list at http://www.cs.utah.edu/~shirley/fcg/errata - p 29, 32, 39 have potential to confuse

Notation: Scalars, Vectors, Matrices

- scalar
a
- (lower case, italic)
- vector
$\mathbf{a}=\left[\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{n}\end{array}\right]$
- (lower case, bold)
- matrix
- (upper case, bold)

$$
\mathbf{A}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

Column vs. Row Vectors

- row vectors

$$
\mathbf{a}_{\text {row }}=\left[\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{n}
\end{array}\right]
$$

- column vectors

$$
\mathbf{a}_{c o l}=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
\ldots \\
a_{n}
\end{array}\right]
$$

- switch back and forth with transpose

$$
\mathbf{a}_{c o l}^{T}=\mathbf{a}_{r o w}
$$

Vector-Vector Addition

- add: vector + vector = vector
- parallelogram rule
- tail to head, complete the triangle

$$
\begin{gathered}
\text { algebraic } \\
\mathbf{u}+\mathbf{v}=\left[\begin{array}{l}
u_{1}+v_{1} \\
u_{2}+v_{2} \\
u_{3}+v_{3}
\end{array}\right]
\end{gathered}
$$

$$
\begin{array}{ll}
\text { examples: } & (3,2)+(6,4)=(9,6) \\
& (2,5,1)+(3,1,-1)=(5,6,0)
\end{array}
$$

Vector-Vector Subtraction

- subtract: vector - vector = vector

$\mathbf{u}-\mathbf{v}=\left[\begin{array}{l}u_{1}-v_{1} \\ u_{2}-v_{2} \\ u_{3}-v_{3}\end{array}\right]$
$(3,2)-(6,4)=(-3,-2)$
$(2,5,1)-(3,1,-1)=(-1,4,0)$

Scalar-Vector Multiplication

- multiply: scalar * vector = vector
- vector is scaled

Vector-Vector Multiplication

- multiply: vector * vector = scalar
- dot product, aka inner product

$$
\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right] \cdot\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left(u_{1} * v_{1}\right)+\left(u_{1} * v_{2}\right)+\left(u_{3} * v_{3}\right)
$$

Vector-Vector Multiplication

- multiply: vector * vector = scalar
- dot product, aka inner product
$\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right] \bullet\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]=\left(u_{1} * v_{1}\right)+\left(u_{1} * v_{2}\right)+\left(u_{3} * v_{3}\right)$
$\mathbf{u} \bullet \mathbf{v}=\|\mathbf{u}|\|\mid \mathbf{v}\| \cos \theta$
- geometric interpretation

> = lengths, angles

- can find angle between two vectors

Dot Product Geometry

- can find length of projection of u onto v
$\mathbf{u} \bullet \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta$
$\|\mathbf{u}\| \cos \theta=\frac{\mathbf{u} \bullet \mathbf{v}}{\|\mathbf{v}\|}$

Dot Product Example

$\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right] \bullet\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]=\left(u_{1} * v_{1}\right)+\left(u_{1} * v_{2}\right)+\left(u_{3} * v_{3}\right)$
$\left[\begin{array}{l}6 \\ 1 \\ 2\end{array}\right] \cdot\left[\begin{array}{l}1 \\ 7 \\ 3\end{array}\right]=(6 * 1)+(1 * 7)+(2 * 3)=6+7+6=19$

Basis Vectors

- take any two vectors that are linearly independent (nonzero and nonparallel)
- can use linear combination of these to define any other vector:
$\mathbf{c}=w_{1} \mathbf{a}+w_{2} \mathbf{b}$

63

RHS vs LHS Coordinate Systems

- right-handed coordinate system convention

right hand rule:
index finger x, second finger y; right thumb points up
$\mathbf{z}=\mathbf{x} \times \mathbf{y}$
- left-handed coordinate system

left hand rule:
index finger x, second finger y; left thumb points down $\mathbf{z}=\mathbf{x} \times \mathbf{y}$

Orthonormal Basis Vectors

- if basis vectors are orthonormal (orthogonal (mutually perpendicular) and unit length)
- we have Cartesian coordinate system
- familiar Pythagorean definition of distance

Basis Vectors and Origins

- coordinate system: just basis vectors
- can only specify offset: vectors
- coordinate frame: basis vectors and origin
- can specify location as well as offset: points

$\mathbf{p}=\mathbf{o}+x \mathbf{i}+y \mathbf{j}$

Working with Frames

$\mathbf{p}=\mathbf{o}+x \mathbf{i}+y \mathbf{j}$
F_{1}

Named Coordinate Frames

- origin and basis vectors $\mathbf{p}=\mathbf{o}+a \mathbf{x}+b \mathbf{y}+c \mathbf{z}$
- pick canonical frame of reference
- then don't have to store origin, basis vectors
- just $\quad \mathbf{p}=(a, b, c)$
- convention: Cartesian orthonormal one on previous slide
- handy to specify others as needed
- airplane nose, looking over your shoulder, ...
- really common ones given names in CG
- object, world, camera, screen, ...

Lines

- slope-intercept form
- $y=m x+b$
- implicit form
- $y-m x-b=0$
- $A x+B y+C=0$
- $f(x, y)=0$

Implicit Circles

- $f(x, y)=\left(x-x_{c}\right)^{2}+\left(y-y_{c}\right)^{2}-r^{2}$
- circle is points (x, y) where $f(x, y)=0$
- $p=(x, y), c=\left(x_{c}, y_{c}\right):(\mathbf{p}-\mathbf{c}) \bullet(\mathbf{p}-\mathbf{c})-r^{2}=0$
- points \mathbf{p} on circle have property that vector from \mathbf{c} to \mathbf{p} dotted with itself has value r^{2}
- $\|\mathbf{p}-\mathbf{c}\|^{2}-r^{2}=0$
- points points \mathbf{p} on the circle have property that squared distance from \mathbf{c} to \mathbf{p} is r^{2}
- $\|\mathbf{p}-\mathbf{c}\|-r=0$
- points \mathbf{p} on circle are those a distance r from center point c

Implicit Functions

- find where function is 0
- plug in (x,y), check if
- 0 : on line
- < 0: inside
- > 0: outside
- analogy: terrain
- sea level: $\mathfrak{f = 0}$
- altitude: function value
- topo map: equal-value contours (level sets)

Parametric Curves

- parameter: index that changes continuously
- (x,y): point on curve
- t: parameter
$\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}g(t) \\ h(t)\end{array}\right]$
- vector form
- $\mathbf{p}=f(t)$

Linear Interpolation

- parametric line is example of general concept
- $\mathbf{p}(t)=\mathbf{p}_{0}+t\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right)$
- interpolation
- \mathbf{p} goes through a at $t=0$
- \mathbf{p} goes through \mathbf{b} at $t=1$
- linear
- weights $t,(1-t)$ are linear polynomials in t

- example

$$
\left[\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right]+\left[\begin{array}{cc}
-2 & 5 \\
7 & 1
\end{array}\right]=\left[\begin{array}{cc}
1+(-2) & 3+5 \\
2+7 & 4+1
\end{array}\right]=\left[\begin{array}{cc}
-1 & 8 \\
9 & 5
\end{array}\right]
$$

Scalar-Matrix Multiplication

- multiply: scalar * matrix = matrix

$$
a\left[\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right]=\left[\begin{array}{ll}
a * m_{11} & a^{*} m_{12} \\
a * m_{21} & a^{*} m_{22}
\end{array}\right]
$$

- example

$$
3\left[\begin{array}{ll}
2 & 4 \\
1 & 5
\end{array}\right]=\left[\begin{array}{ll}
3 * 2 & 3 * 4 \\
3 * 1 & 3 * 5
\end{array}\right]=\left[\begin{array}{ll}
6 & 12 \\
3 & 15
\end{array}\right]
$$

Matrix-Matrix Multiplication

- row by column

$$
\begin{gathered}
{\left[\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right]\left[\begin{array}{ll}
n_{11} & n_{12} \\
n_{21} & n_{22}
\end{array}\right]=\left[\begin{array}{ll}
p_{11} & p_{12} \\
p_{21} & p_{22}
\end{array}\right]} \\
p_{11}=m_{11} n_{11}+m_{12} n_{21}
\end{gathered}
$$

Matrix-Matrix Multiplication

- row by column

$$
\left.\left[\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right]\left[\begin{array}{l}
n_{11} \\
n_{21}
\end{array}\right] \begin{array}{l}
n_{12} \\
n_{22}
\end{array}\right]=\left[\begin{array}{ll}
p_{11} & p_{12} \\
p_{21} & p_{22}
\end{array}\right]
$$

$$
p_{11}=m_{11} n_{11}+m_{12} n_{21}
$$

$$
p_{21}=m_{21} n_{11}+m_{22} n_{21}
$$

Matrix-Matrix Multiplication

- row by column

Matrix-Matrix Multiplication

- row by column

$$
\left[\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right]\left[\begin{array}{ll}
n_{11} & n_{12} \\
n_{21} & n_{22}
\end{array}\right]=\left[\begin{array}{ll}
p_{11} & p_{12} \\
p_{21} & p_{22}
\end{array}\right]
$$

$$
\begin{aligned}
& p_{11}=m_{11} n_{11}+m_{12} n_{21} \\
& p_{21}=m_{21} n_{11}+m_{22} n_{21} \\
& p_{12}=m_{11} n_{12}+m_{12} n_{22} \\
& p_{22}=m_{21} n_{12}+m_{22} n_{22}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right]\left[\begin{array}{ll}
n_{11} & \begin{array}{l}
n_{12} \\
n_{21}
\end{array} \\
n_{22}
\end{array}\right]=\left[\begin{array}{ll}
p_{11} & p_{12} \\
p_{21} & p_{22}
\end{array}\right]} \\
& p_{11}=m_{11} n_{11}+m_{12} n_{21} \\
& p_{21}=m_{21} n_{11}+m_{22} n_{21} \\
& p_{12}=m_{11} n_{12}+m_{12} n_{22}
\end{aligned}
$$

Matrix-Matrix Multiplication

- row by column

$$
\left[\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right]\left[\begin{array}{ll}
n_{11} & n_{12} \\
n_{21} & n_{22}
\end{array}\right]=\left[\begin{array}{cc}
p_{11} & p_{12} \\
p_{21} & p_{22}
\end{array}\right]
$$

$$
\begin{aligned}
& p_{11}=m_{11} n_{11}+m_{12} n_{21} \\
& p_{21}=m_{21} n_{11}+m_{22} n_{21} \\
& p_{12}=m_{11} n_{12}+m_{12} n_{22} \\
& p_{22}=m_{21} n_{12}+m_{22} n_{22}
\end{aligned}
$$

- noncommutative: $\mathbf{A B}$!= $\mathbf{B A}$

Matrix Multiplication

- can only multiply if
number of left rows = number of right cols
- legal
- undefined

$$
\left[\begin{array}{lll}
a & b & c \\
e & f & g
\end{array}\right]\left[\begin{array}{cc}
h & i \\
j & k \\
l & m
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
a & b & c \\
e & f & g \\
o & p & q
\end{array}\right]\left[\begin{array}{cc}
h & i \\
j & k
\end{array}\right]
$$

Matrix-Vector Multiplication

- points as column vectors: postmultiply

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
h^{\prime}
\end{array}\right]=\left[\begin{array}{llll}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34} \\
m_{41} & m_{42} & m_{43} & m_{44}
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
h
\end{array}\right] \quad \mathbf{p}^{\prime}=\mathbf{M} \mathbf{p}
$$

- points as row vectors: premultiply

$$
\left[\begin{array}{lll}
x^{\prime} & y^{\prime} & z^{\prime}
\end{array} h^{\prime}\right]=\left[\begin{array}{llll}
x & y & z & h
\end{array}\right]\left[\begin{array}{llll}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{12} & m_{22} & m_{32} \\
m_{31} & m_{32} & m_{33} & m_{24} \\
m_{41} & m_{12} & m_{43} & m_{44}
\end{array}\right]^{T} \mathbf{p}^{\prime T}=\mathbf{p}^{T} \mathbf{M}^{T}
$$

Matrices

- transpose
$\left[\begin{array}{llll}m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44}\end{array}\right]^{T}=\left[\begin{array}{llll}m_{11} & m_{21} & m_{31} & m_{41} \\ m_{12} & m_{22} & m_{32} & m_{42} \\ m_{13} & m_{23} & m_{33} & m_{43} \\ m_{14} & m_{24} & m_{34} & m_{44}\end{array}\right]$
- identity
$\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]$
- inverse $\quad \mathbf{A A}^{-1}=\mathbf{I}$
- not all matrices are invertible

Matrices and Linear Systems

- linear system of n equations, n unknowns

$$
\begin{aligned}
& 3 x+7 y+2 z=4 \\
& 2 x-4 y-3 z=-1 \\
& 5 x+2 y+z=1
\end{aligned}
$$

- matrix form $\mathbf{A x}=\mathbf{b}$

$$
\left[\begin{array}{ccc}
3 & 7 & 2 \\
2 & -4 & -3 \\
5 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
4 \\
-1 \\
-1
\end{array}\right]
$$

Rendering Pipeline

Reading

- RB Chap. Introduction to OpenGL
- RB Chap. State Management and Drawing Geometric Objects
- RB Appendix Basics of GLUT
- (Basics of Aux in v 1.1)

Rendering

- goal
- transform computer models into images
- may or may not be photo-realistic
- interactive rendering
- fast, but limited quality
- roughly follows a fixed patterns of operations
- rendering pipeline
- offline rendering
- ray-tracing
- global illumination

Rendering

- tasks that need to be performed (in no particular order):
- project all 3D geometry onto the image plane
- geometric transformations
- determine which primitives or parts of primitives are visible
- hidden surface removal
- determine which pixels a geometric primitive covers
- scan conversion
- compute the color of every visible surface point
- lighting, shading, texture mapping

Rendering Pipeline

- what is the pipeline?
- abstract model for sequence of operations to transform geometric model into digital image
- abstraction of the way graphics hardware works
- underlying model for application programming interfaces (APIs) that allow programming of graphics hardware
- OpenGL
- Direct 3D
- actual implementation details of rendering pipeline will vary

Geometry Database

- geometry database
- application-specific data structure for holding geometric information
- depends on specific needs of application
- triangle soup, points, mesh with connectivity information, curved surface

Page 17

Pipeline Advantages

- modularity: logical separation of different components
- easy to parallelize
- earlier stages can already work on new data while later stages still work with previous data
- similar to pipelining in modern CPUs
- but much more aggressive parallelization possible (special purpose hardware!)
- important for hardware implementations
- only local knowledge of the scene is necessary

Pipeline Disadvantages

- limited flexibility
- some algorithms would require different ordering of pipeline stages
- hard to achieve while still preserving compatibility
- only local knowledge of scene is available
- shadows
- global illumination

Graphics State

- set the state once, remains until overwritten
- glColor3f(1.0, 1.0, 0.0) \rightarrow set color to yellow
- gISetClearColor(0.0, 0.0, 0.2) \rightarrow dark blue bg
- glEnable(LIGHTO) \rightarrow turn on light
- glEnable(GL_DEPTH_TEST) \rightarrow hidden surf.

OpenGL

- started in 1989 by Kurt Akeley
- based on IRIS_GL by SGI
- API to graphics hardware
- designed to exploit hardware optimized for display and manipulation of 3D graphics
- implemented on many different platforms
- low level, powerful flexible
- pipeline processing
- set state as needed

Geometry Pipeline

- tell it how to interpret geometry
- glBegin(<mode of geometric primitives>)
- mode = GL_TRIANGLE, GL_POLYGON, etc.
- feed it vertices
- glVertex3f(-1.0, 0.0, -1.0)
- glVertex3f(1.0, 0.0, -1.0)
- gIVertex3f(0.0, 1.0, -1.0)
- tell it you're done
- glEnd()


```
Code Sample
void display()
{
    glClearColor(0.0, 0.0, 0.0, 0.0);
    glClear(GL_COLOR_BUFFER_BIT);
    glColor3f(0.0, 1.0, 0.0);
    glBegin(GL_POLYGON);
        glVertex3f(0.25, 0.25, -0.5);
        glVertex3f(0.75, 0.25, -0.5);
        glVertex3f(0.75, 0.75, -0.5);
        glVertex3f(0.25, 0.75, -0.5);
    glEnd();
    glFlush();
}
- more OpenGL as course continues
```


GLUT: OpenGL Utility Toolkit

- developed by Mark Kilgard (also from SGI)
- simple, portable window manager
- opening windows
- handling graphics contexts
- handling input with callbacks
- keyboard, mouse, window reshape events
- timing
- idle processing, idle events
- designed for small-medium size applications
- distributed as binaries
- free, but not open source

GLUT Draw World

```
int main(int argc, char **argv)
i
    glutInit( &argc, argv );
    glutInitDisplayMode( GLUT_RGB 
        GLUT_DOUBLE | GLUT_DEPTH);
    glutInitWindowSize( 640, 480);
    glutCreateWindow( "openGLDemo" );
    glutDisplayFunc( DrawWorld );
    glutIdleFunc(Idle);
    glClearColor( 1,1,1 );
    glClearColor( 1,
    return 0; // never reached
}
```


Event-Driven Programming

- main loop not under your control
- vs. procedural
- control flow through event callbacks
- redraw the window now
- key was pressed
- mouse moved
- callback functions called from main loop when events occur
- mouse/keyboard state setting vs. redrawing

GLUT Callback Functions

// you supply these kind of functions
void reshape (int w, int h);
void keyboard(unsigned char key, int x , int y);
void mouse(int but, int state, int x, int y);
void idle();
void display();
// register them with glut
glutReshapeFunc (reshape)
glutKeyboardFunc (keyboard)
glutMouseFunc (mouse)
glutDisplayFunc (display);
void glutDisplayFunc (void (*func) (void))
void glutKeyboardFunc (void (*func) (unsigned char key, int x , int y))
void glutIdleFunc (void (*func) ());
void glutReshapeFunc (void (*func) (int width, int height));

Idle Function

void Idle() \{
angle += 0.05;
glutPostRedisplay();
\}

- called from main loop when no user input
- should return control to main loop quickly
- update value of angle variable here
- then request redraw event from GLUT
- draw function will be called next time through
- continues to rotate even when no user action

Keyboard/Mouse Callbacks

- do minimal work
- request redraw for display
- example: keypress triggering animation
- do not create loop in input callback!
- what if user hits another key during animation?
- shared/global variables to keep track of state
- display function acts on current variable value

Thursday Lab

- labs start Thursday
- 11-12: morning not ideal, it's before lecture
- 3-4,4-5: better, try to attend afternoon if possible
- project 0
- make sure you can compile OpenGL/GLUT
- useful to test home computing environment
- template: spin around obj files
- todo: change rotation axis
- do not hand in, not graded
- http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005/a0
- project 1
- transformations
- more on Thursday after transformations lecture

Remote Graphics

- OpenGL does not work well remotely
- very slow
- only one user can use graphics at a time
- current X server doesn't give priority to console, just does first come first served
- problem: FCFS policy = confusion/chaos
- solution: console user gets priority
- only use graphics remotely if nobody else logged on
- with 'who' command, ": 0 " is console person
- stop using graphics if asked by console user via email
- or console user can reboot machine out from under you

