Rasterization II

Week 6, Wed Feb 10

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010
Correction: News

• TA office hours in lab for P2/H2 questions this week
 • Mon 3-5 (Shailen)
 • Tue 3:30-5 (Kai)
 • Wed 2-4 (Shailen)
 • Thu 3-5 (Kai)
 • Fri 2-4 (Garrett)

• again - start now, do not put off until late in break!
Review: HSV Color Space

- hue: dominant wavelength, “color”
- saturation: how far from grey
- value/brightness: how far from black/white
- cannot convert to RGB with matrix alone
Review: YIQ Color Space

- color model used for color TV
 - Y is luminance (same as CIE)
 - I & Q are color (not same I as HSI!)
 - using Y backwards compatible for B/W TVs
 - conversion from RGB is linear

\[
\begin{bmatrix}
Y \\
I \\
Q
\end{bmatrix} = \begin{bmatrix}
0.30 & 0.59 & 0.11 \\
0.60 & -0.28 & -0.32 \\
0.21 & -0.52 & 0.31
\end{bmatrix} \begin{bmatrix}
R \\
G \\
B
\end{bmatrix}
\]

- green is much lighter than red, and red lighter than blue
Review: Luminance vs. Intensity

- **luminance**
 - Y of YIQ
 - $0.299R + 0.587G + 0.114B$

- **intensity/brightness**
 - I/V/B of HSI/HSV/HSB
 - $0.333R + 0.333G + 0.333B$

Review: Color Constancy

- automatic “white balance” from change in illumination
- vast amount of processing behind the scenes!
- colorimetry vs. perception
Review: Scan Conversion

- convert continuous rendering primitives into discrete fragments/pixels
 - given vertices in DCS, fill in the pixels
- display coordinates required to provide scale for discretization
Review: Basic Line Drawing

\[y = mx + b \]

\[y = \frac{(y_1 - y_0)}{(x_1 - x_0)}(x - x_0) + y_0 \]

• goals
 • integer coordinates
 • thinnest line with no gaps
• assume
 • slope
 • one octant, other cases symmetric
• how can we do this more quickly?
Review/Correction: Midpoint Algorithm

- we're moving horizontally along x direction (first octant)
 - only two choices: draw at current y value, or move up vertically to y+1?
 - check if midpoint between two possible pixel centers above or below line candidates
 - top pixel: (x+1,y+1)
 - bottom pixel: (x+1, y)
 - midpoint: (x+1, y+.5)
 - check if midpoint above or below line
 - below: pick top pixel
 - above: pick bottom pixel
- key idea behind Bresenham
 - reuse computation from previous step
 - integer arithmetic by doubling values
Making It Fast: Reuse Computation

- midpoint: if $f(x+1, y+.5) < 0$ then $y = y+1$
- on previous step evaluated $f(x-1, y-.5)$ or $f(x-1, y+.5)$
- $f(x+1, y) = f(x,y) + (y_0-y_1)$
- $f(x+1, y+1) = f(x,y) + (y_0-y_1) + (x_1-x_0)$

```java
y = y0
d = f(x0+1, y0+.5)
for (x=x0; x <= x1; x++) {
    draw(x,y);
    if (d<0) then {
        y = y + 1;
        d = d + (x1 - x0) + (y0 - y1)
    } else {
        d = d + (y0 - y1)
    }
}
```
Making It Fast: Integer Only

• avoid dealing with non-integer values by doubling both sides

\[
y = y_0 \\
d = f(x_0 + 1, y_0 + 0.5) \\
\text{for } (x = x_0; x \leq x_1; x++) \\
\{ \\
\quad \text{draw}(x, y); \\
\quad \text{if } (d < 0) \text{ then } \{ \\
\quad \quad y = y + 1; \\
\quad \quad d = d + (x_1 - x_0) + (y_0 - y_1) \\
\quad \} \text{ else } \{ \\
\quad \quad d = d + (y_0 - y_1) \\
\quad \}\}
\]

\[
y = y_0 \\
2d = 2(y_0 - y_1)(x_0 + 1) + (x_1 - x_0)(2y_0 + 1) + 2x_0y_1 - 2x_1y_0 \\
\text{for } (x = x_0; x \leq x_1; x++) \{ \\
\quad \text{draw}(x, y); \\
\quad \text{if } (d < 0) \text{ then } \{ \\
\quad \quad y = y + 1; \\
\quad \quad d = d + 2(x_1 - x_0) + 2(y_0 - y_1) \\
\quad \} \text{ else } \{ \\
\quad \quad d = d + 2(y_0 - y_1) \\
\quad \}\}
\]
Rasterizing Polygons/Triangles

• basic surface representation in rendering
• why?
 • lowest common denominator
 • can approximate any surface with arbitrary accuracy
 • all polygons can be broken up into triangles
 • guaranteed to be:
 • planar
 • triangles - convex
• simple to render
 • can implement in hardware
Triangulating Polygons

• simple convex polygons
 • trivial to break into triangles
 • pick one vertex, draw lines to all others not immediately adjacent
 • OpenGL supports automatically
 • `glBegin(GL_POLYGON) ... glEnd()`

• concave or non-simple polygons
 • more effort to break into triangles
 • simple approach may not work
 • OpenGL can support at extra cost
 • `gluNewTess()`, `gluTessCallback()`, ...
Problem

• input: closed 2D polygon
• problem: fill its interior with specified color on graphics display
• assumptions
 • simple - no self intersections
 • simply connected
• solutions
 • flood fill
 • edge walking
Flood Fill

- simple algorithm
 - draw edges of polygon
 - use flood-fill to draw interior
Flood Fill

- start with *seed point*
- recursively set all neighbors until boundary is hit
Flood Fill

- draw edges
- run:
  ```
  if (x >= 0 && x < n && y >= 0 && y < m) {
    if (image[x][y] != color1) {
      image[x][y] = color2;
      if (x < n) image[x+1][y] = image[x][y];
      if (x > 0) image[x-1][y] = image[x][y];
      if (y < m) image[x][y+1] = image[x][y];
      if (y > 0) image[x][y-1] = image[x][y];
    }
  }
  ```
- drawbacks?
Flood Fill Drawbacks

- pixels visited up to 4 times to check if already set
- need per-pixel flag indicating if set already
 - must clear for every polygon!
Scanline Algorithms

- **scanline**: a line of pixels in an image
 - set pixels inside polygon boundary along horizontal lines one pixel apart vertically
General Polygon Rasterization

• how do we know whether given pixel on scanline is inside or outside polygon?
General Polygon Rasterization

- idea: use a parity test

```cpp
for each scanline
    edgeCnt = 0;
    for each pixel on scanline (l to r)
        if (oldpixel->newpixel crosses edge)
            edgeCnt ++;
        // draw the pixel if edgeCnt odd
        if (edgeCnt % 2)
            setPixel(pixel);
```
Making It Fast: Bounding Box

• smaller set of candidate pixels
 • loop over xmin, xmax and ymin,ymax instead of all x, all y
Triangle Rasterization Issues

- moving slivers
- shared edge ordering
Triangle Rasterization Issues

• **exactly which pixels should be lit?**
 • pixels with centers inside triangle edges
• **what about pixels exactly on edge?**
 • draw them: order of triangles matters (it shouldn’t)
 • don’t draw them: gaps possible between triangles
• need a consistent (if arbitrary) rule
 • example: draw pixels on left or top edge, but not on right or bottom edge
 • example: check if triangle on same side of edge as offscreen point
Interpolation
Interpolation During Scan Conversion

- drawing pixels in polygon requires interpolating many values between vertices
 - \(r, g, b\) colour components
 - use for shading
 - \(z\) values
 - \(u, v\) texture coordinates
 - \(\vec{N}_x, \vec{N}_y, \vec{N}_z\) surface normals
- equivalent methods (for triangles)
 - bilinear interpolation
 - barycentric coordinates
Bilinear Interpolation

- interpolate quantity along L and R edges, as a function of y
 - then interpolate quantity as a function of x
Barycentric Coordinates

• non-orthogonal coordinate system based on triangle itself
 • origin: \(P_1 \), basis vectors: \((P_2-P_1)\) and \((P_3-P_1)\)

\[
P = P_1 + \beta(P_2-P_1) + \gamma(P_3-P_1)
\]
Barycentric Coordinates

γ = 1.5 γ = 1 γ = 0.5 γ = 0 γ = -0.5 γ = -1
β = -1 β = -0.5 β = 0 β = 0.5 β = 1 β = 1.5

P₁ P₂ P₃ P
Barycentric Coordinates

• non-orthogonal coordinate system based on triangle itself
 • origin: \(P_1\), basis vectors: \((P_2-P_1)\) and \((P_3-P_1)\)

\[
P = P_1 + \beta(P_2-P_1) + \gamma(P_3-P_1)
\]

\[
P = (1-\beta-\gamma)P_1 + \beta P_2 + \gamma P_3
\]

\[
P = \alpha P_1 + \beta P_2 + \gamma P_3
\]

\(\alpha = 0\)

\(\alpha = 1\)
Using Barycentric Coordinates

- weighted combination of vertices
- smooth mixing
- speedup
 - compute once per triangle

\[P = \alpha \cdot P_1 + \beta \cdot P_2 + \gamma \cdot P_3 \]
\[\alpha + \beta + \gamma = 1 \]
\[0 \leq \alpha, \beta, \gamma \leq 1 \] for points inside triangle

“convex combination of points”
Deriving Barycentric From Bilinear

- from bilinear interpolation of point \(P \) on scanline

\[
P_L = P_2 + \frac{d_1}{d_1 + d_2} (P_3 - P_2)
= (1 - \frac{d_1}{d_1 + d_2})P_2 + \frac{d_1}{d_1 + d_2} P_3
= \frac{d_2}{d_1 + d_2} P_2 + \frac{d_1}{d_1 + d_2} P_3
\]
Deriving Barycentric From Bilineaer

• similarly

\[P_R = P_2 + \frac{b_1}{b_1 + b_2} (P_1 - P_2) \]

\[= (1 - \frac{b_1}{b_1 + b_2}) P_2 + \frac{b_1}{b_1 + b_2} P_1 = \]

\[= \frac{b_2}{b_1 + b_2} P_2 + \frac{b_1}{b_1 + b_2} P_1 \]
Deriving Barycentric From Bilinear

• combining

\[
P_L = \frac{d_2}{d_1 + d_2} P_2 + \frac{d_1}{d_1 + d_2} P_3
\]

\[
P_R = \frac{b_2}{b_1 + b_2} P_2 + \frac{b_1}{b_1 + b_2} P_1
\]

• gives
Deriving Barycentric From Bilinear

• thus \(P = \alpha P_1 + \beta P_2 + \gamma P_3 \) with

\[
\begin{align*}
\alpha + \beta + \gamma &= 1, \\
0 \leq \alpha, \beta, \gamma &\leq 1
\end{align*}
\]

• can verify barycentric properties
Computing Barycentric Coordinates

- 2D triangle area
 - half of parallelogram area
 - from cross product

\[A = A_{P_1} + A_{P_2} + A_{P_3} \]
\[\alpha = A_{P_1} / A \]
\[\beta = A_{P_2} / A \]
\[\gamma = A_{P_3} / A \]