Render Modes
- glRenderMode(mode)
 - GL_RENDER: normal color buffer
 - default
 - GL_SELECT: selection mode for picking
 - (GL_FEEDBACK: report objects drawn)

Project 2 Hints
- don't forget to keep viewing and projections in their respective stacks
- try drawing scene graphs to help you figure out how to place multiple cameras
 - especially geosynchronous: camera as child of object in world in the scene graph
 - geometric representation of camera vs. what is shown through its window
- disk for Saturn rings: try scaling sphere by 0
- OK to reset camera position between absolute/relative navigation modes
- OK to have camera jump to different orientation when new planet picked in geosync mode

News
- Homework 2 out
 - due Fri Feb 12 5pm
- Project 2 out
 - due Tue Mar 2 5pm
- moved due date after break after pleas of pre-break overload with too many assignments due
- start early, do "not" leave until late in break!
- reminder
 - extra handouts in lab

Review/Clarify: Trackball Rotation
- user drags between two points on image plane
 - mouse down at \((x, y) \), mouse up at \((a, b) \)
- find corresponding points on virtual ball
 - \(p_1 = (x, y, z) \), \(p_2 = (a, b, 0) \)
- compute rotation angle and axis for ball
 - axis of rotation is plane normal: cross product \(p_1 \times p_2 \)
 - amount of rotation \(t \) from angle between lines
 - \(t \cdot p_2 = [t \cdot [p_1, [p_2, C]]] \)

Review/More: Relative Motion
- how to move relative to current camera?
 - what you see in the window
 - computation in coordinate system used to draw previous frame is simple:
 - incremental change \(i \) to current \(C \)
 - each time we just want to premultiply by new matrix
 - \(p = C \cdot p \)
 - but we know that OpenGL only supports postmultiply by new matrix
 - use OpenGL matrix stack as calculator/storage!
 - dump out model/view matrix from previous frame with glGetDoublev()
 - \(C = \) current camera coordinate matrix
 - wipe the matrix stack with glLoadIdentity()
 - apply incremental update matrix \(i \)
 - apply current camera coord matrix \(C \)

Review: Select/Hit Picking
- use small region around cursor for viewport
- assign per-object integer keys (names)
- redraw in special mode
- store hit list of objects in region
- examine hit list
 - OpenGL support

Viewport
- small rectangle around cursor
 - change coord sys so fills viewport
 - why rectangle instead of point?
 - people aren't great at positioning mouse
 - Fitts' Law: time to acquire a target is function of the distance to and size of the target
 - allow several pixels of slop

Name Stack
- again, "names" are just integers
 - glInitNames()
- flat list
 - glLoadName(name)
 - or hierarchy supported by stack
 - glPushName(name), glPopName
 - can have multiple names per object

Hierarchical Names Example
```c
for(i = 0; i < 2; ++i)
  {
    glPushMatrix();
    key = i == 0 ? 1 : 2; ++i;
    glPushMatrix();
    glPushMatrix();
    glLoadIdentity();
    glCallList(snowManBodyDL);
    glCallList(snowManHeadDL);
    glCallList(snowManBodyDL);
    glCallList(snowManHeadDL);
    glPopName();
    glPopMatrix();
  } // end for loop.
```

Hit List
- glSelectBuffer(buffersize, "buffer")
 - where to store hit list data
- on hit, copy entire contents of name stack to output buffer.
- hit record
 - number of names on stack
 - minimum and maximum depth of object vertices
 - depth lies in the NDC z range \([0,1]\)
- format: multiplied by \(2^{32}-1\) then rounded to nearest int
17 Integrated vs. Separate Pick Function
- integrate: use same function to draw and pick
 - simpler to code
 - name stack commands ignored in render mode
- separate: customize functions for each
 - potentially more efficient
 - can avoid drawing unpickable objects

18 Select/Hit
- advantages
 - faster
 - OpenGL support means hardware acceleration
 - avoid shading overhead
 - flexible precision
 - size of region controllable
 - flexible architecture
 - custom code possible, e.g. guaranteed frame rate
- disadvantages
 - more complex

19 Hybrid Picking
- select/hit approach: fast, coarse
 - object-level granularity
- manual ray intersection: slow, precise
 - exact intersection point
- hybrid: both speed and precision
 - use select/hit to find object
 - then intersect ray with that object

20 High-Precision Picking with OpenGL
- gluUnproject
 - transform window coordinates to object coordinates
given current projection and modelview matrices
- use to create ray from cursor location
call gluUnProject twice with same (x,y) mouse location
 - z = near: (x,y,0)
 - z = far: (x,y,1)
- subtract near result from far result to get direction vector for ray
 - use this ray for line/polygon intersection

21 Additive vs. Subtractive Colors
- additive: light
 - monitors, LCDs
 - RGB model
- subtractive: pigment
 - printers
 - CMY model
 - dyes absorb light

22 Electromagnetic Spectrum
- common light sources differ in kind of spectrum they emit:
 - continuous spectrum
 - energy is emitted at all wavelengths
 - blackbody radiation
 - tungsten light bulbs
 - certain fluorescent lights
 - sunlight
 - electrical arcs
 - line spectrum
 - energy is emitted at certain discrete frequencies

23 Vision/Color
- elements of color:
 - physics
 - illumination
 - electromagnetic spectra
 - reflection
 - material properties
 - surface geometry and microgeometry
 - polished versus matte versus brushed
 - perception
 - physiology and neurophysiology
 - perceptual psychology

24 Additive vs. Subtractive Colors
- additive: light
 - monitors, LCDs
 - RGB model
- subtractive: pigment
 - printers
 - CMY model
 - dyes absorb light

25 Component Color
- component-wise multiplication of colors
 - \((a_0, a_1, a_2) \times (b_0, b_1, b_2) = (a_0b_0, a_1b_1, a_2b_2)\)
- Light + object = color
 - why does this work?
 - must dive into light, human vision, color spaces

26 Blackbody Radiation
- black body
 - dark material, so that reflection can be neglected
 - spectrum of emitted light changes with temperature
 - this is the origin of the term “color temperature”
 - e.g. when setting a white point for your monitor
 - cold: mostly infrared
 - hot: reddish
 - very hot: bluish
 - demo:

27 Electromagnetic Spectrum
- 700 nm - 400 nm
- AM radio/microwave ultraviolet x-rays
- FM radio, TV
- infrared

28 Basics Of Color
- elements of color:
 - physics
 - illumination
 - electromagnetic spectra
 - reflection
 - material properties
 - surface geometry and microgeometry
 - polished versus matte versus brushed
 - perception
 - physiology and neurophysiology
 - perceptual psychology

29 Light Sources
- common light sources differ in kind of spectrum they emit:
 - continuous spectrum
 - energy is emitted at all wavelengths
 - blackbody radiation
 - tungsten light bulbs
 - certain fluorescent lights
 - sunlight
 - electrical arcs
 - line spectrum
 - energy is emitted at certain discrete frequencies
 - bulb spectrum
 - tungsten filament
 - energy is emitted at specific wavelengths
 - line spectrum
 - energy is emitted at specific wavelengths

30 Additive vs. Subtractive Colors
- additive: light
 - monitors, LCDs
 - RGB model
- subtractive: pigment
 - printers
 - CMY model
 - dyes absorb light

31 Component Color
- component-wise multiplication of colors
 - \((a_0, a_1, a_2) \times (b_0, b_1, b_2) = (a_0b_0, a_1b_1, a_2b_2)\)
- Light + object = color
 - why does this work?
 - must dive into light, human vision, color spaces

32 Electromagnetic Spectrum
- 700 nm - 400 nm
- AM radio/microwave ultraviolet x-rays
- FM radio, TV
- infrared
White Light
- sun or light bulbs emit all frequencies within visible range to produce what we perceive as "white light"

Sunlight Spectrum
- spectral distribution: power vs. wavelength

Continuous Spectrum
- sunlight
- various "daylight" lamps

Line Spectrum
- ionized gases
- lasers
- some fluorescent lamps

White Light and Color
- when white light is incident upon an object, some frequencies are reflected and some are absorbed by the object
- combination of frequencies present in the reflected light that determines what we perceive as the color of the object

Tristimulus Theory of Color Vision
- Although light sources can have extremely complex spectra, it was empirically determined that colors could be described by only 3 primaries
- Colors that look the same but have different spectra are called metamers

Hue
- hue (or simply, "color") is dominant wavelength/frequency
- integration of energy for all visible wavelengths is proportional to intensity of color

Saturation or Purity of Light
- how washed out or how pure the color of the light appears
- contribution of dominant light vs. other frequencies producing white light
- saturation: how far is color from grey
 - pink is less saturated than red
 - sky blue is less saturated than royal blue

Intensity vs. Brightness
- intensity: physical term
- measured radiant energy emitted per unit of time, per unit solid angle, and per unit projected area of the source (related to the luminance of the source)
- lightness/brightness: perceived intensity of light
 - nonlinear

Physiology of Vision
- Center of retina is densely packed region called the fovea.
- Cones much denser here than the periphery
- Center of retina is densely packed region called the fovea.

Trichromacy
- three types of cones
 - L or R, most sensitive to red light (610 nm)
 - M or G, most sensitive to green light (560 nm)
 - S or B, most sensitive to blue light (430 nm)

Color Spaces
- three types of cones suggest color is a 3D quantity. how to define 3D color space?
 - idea: perceptually based measurement
 - shine given wavelength (λ) on a screen
 - user must control three pure lights producing three other wavelengths
 - used R=700nm, G=546nm, and B=436nm
 - adjust intensity of RGB until colors are identical
 - this works because of metamers!
 - experiments performed in 1930s
Negative Lobes

- sometimes need to point red light to shine on target in order to match colors
 - equivalent mathematically to "removing red"
 - but physically impossible to remove red from CRT phosphors
- can’t generate all other wavelengths with any set of three positive monochromatic lights!
- solution: convert to new synthetic coordinate system to make the job easy

CIE Color Space

- CIE defined 3 ‘imaginary’ lights X, Y, Z
 - any wavelength λ, can be matched perceptually by positive combinations

Note that:
X = R
Y = G
Z = B

Measured vs. CIE Color Spaces

- X, Y, Z form 3D shape
 - project X, Y, Z on X+Y+Z=1 plane for 2D color space
 - chromaticity diagram
 - separate color from brightness
 - x = X / (X+Y+Z)
 - y = Y / (X+Y+Z)

CIE “Horseshoe” Diagram Facts

- all visible colors lie inside the horseshoe
 - result from color matching experiments
 - spectral (monochromatic) colors lie around the border
 - straight line between blue and red contains purple tones
- colors combine linearly (i.e. along lines), since the xy-plane is a plane from a linear space

Color Interpolation, Dominant & Opponent Wavelength

- gamut is polygon, device primaries at corners
 - defines reproducible color range
 - X, Y, and Z are hypothetical light sources, no device can produce entire gamut

HSV Color Space

- more intuitive color space for people
 - H = Hue
 - dominant wavelength, “color”
 - S = Saturation
 - how far from grey/white
 - V = Value
 - how far from black/white
 - also brightness, B, intensity, I, lightness L
- also: brightness B, intensity I, lightness L

RGB Color Space (Color Cube)

- define colors with (r, g, b)
 - amounts of red, green, and blue
 - used by OpenGL
 - hardware-centric
 - RGB color cube sits within CIE color space
 - subset of perceivable colors
 - scale, rotate, shear cube

Display Gamuts

- all positive, unit area
 - Y is luminance, no hue
 - X, Z no luminance

Gamut Mapping

- how to handle colors outside gamut?
 - one way: construct ray to white point, find closest displayable point within gamut

CIE and Chromaticity Diagram

- can choose a point C for a white point
 - corresponds to an illuminant
 - usually on curve swept out by black body radiation spectra for different temperatures
 - two colors are complementary relative to C when are
 - located on opposite sides of line segment through C
 - C is an affine combination of the two colors
 - find dominant wavelength of a color
 - extend line from C through color to edge of diagram
 - some colors (i.e. purples) do not have a dominant wavelength, but their complementary color does

Blackbody Curve

- illumination:
 - candle 2500K
 - A: Light bulb
 - B: Sunrise/sunset
 - C: Dusk/dawn
 - D: Daylight 6500K
 - E: Overcast day 7000K
 - Light from H: >20,000K

Projector Gamuts

- all positive, unit area
 - Y is luminance, no hue
 - X, Z no luminance

HSV/HSI and RGB

- HSV/HSI conversion from RGB not expressible in matrix
 - H=Hue same in both
 - V=Value is max, Intensity is average

\[
H = \cos^{-1}\left(\frac{1}{2}(R - G) + (R - B)\right) \quad \text{if } (B > G), \quad H = 360 - H
\]

HSI:

\[
S = 1 - \frac{\min(R, G, B)}{I} \quad \text{if } (R + G + B) \neq 0

V = \max(R, G, B)
\]