Review: Separate Warp and Homogenize

- warp requires only standard matrix multiply
 - distort such that orthographic projection of distorted objects shows desired perspective projection
 - w is changed
 - clip after warp, before divide
 - division by w: homogenization

Review: Perspective to NDCS Derivation

- shear
- scale
- projection-normalization

Perspective Example

\[
\begin{bmatrix}
2a & 0 & 0 \\
0 & 2b & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

view volume

- left: \(x = -1 \), right: \(x = 1 \)
- top: \(y = 1 \), bottom: \(y = -1 \)
- near: \(z = 1 \), far: \(z = 4 \)

Perspective Example

tracks in VCS:

- left: \(x = -1 \), right: \(x = 1 \)
- top: \(y = 1 \), bottom: \(y = -1 \)
- near: \(z = 1 \), far: \(z = 4 \)

Perspective Example

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -5/3 & -8/3 \\
0 & 0 & -1 & 0
\end{bmatrix}
\]

Perspective Example

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -5/3 & -8/3 \\
0 & 0 & -1 & 0
\end{bmatrix}
\]

OpenGL Example

Project 1 Grading News

- don't forget to show up 5 min before your slot
- see news item on top of course page for signup sheet scan
- if you have not signed up or need to change your time, contact shailen AT cs.ubc.ca
- you will lose marks if we have to hunt you down!

Review: Perspective Warp/Predistortion

- perspective viewing frustum predistorted to cube
- orthographic rendering of warped objects in cube produces same image as perspective rendering of original frustum

Review: Projective Rendering Pipeline

object \(OCS \)

world \(WC2 \)

viewing \(VCS \)

projection

transformation

modeling

transformations that are applied to object first are specified last

Viewing: Incremental Relative Motion

- how to move relative to current camera coordinate system?
 - what you see in the window
 - computation in coordinate system used to draw previous frame is simple:
 - incremental change \(I \) to current \(C \)
 - at time \(k \), want \(p' = I_k p_k \psi_{k-1} \ldots I_1 p_1 \psi_0 \)
 - each time we just want to premultiply by new matrix
 - \(p' = C p \)
 - but we know that OpenGL only supports postmultiply by new matrix
 - \(p' = C p \)

Viewing: More Camera Motion

- sneaky trick: OpenGL modelview matrix has the info we want!
 - dump out modelview matrix with \(\text{glGetDoublev()} \)
 - \(C \) current camera coordinate matrix
 - wipe the matrix stack with \(\text{glLoadIdentity()} \)
 - apply incremental update matrix \(\psi \)
 - apply current camera model coord \(M \)
 - must leave the modelview matrix unchanged by object transformations after your display call?
 - use push/pop
 - using OpenGL for storage and calculation
 - querying pipeline is expensive
 - but safe to do just once per frame

Project 1 Grading News

- don't forget to show up 5 min before your slot
- see news item on top of course page for signup sheet scan
- if you have not signed up or need to change your time, contact shailen AT cs.ubc.ca
- you will lose marks if we have to hunt you down!

Review: Perspective Warp/Predistortion

- perspective viewing frustum predistorted to cube
- orthographic rendering of warped objects in cube produces same image as perspective rendering of original frustum

Review: Projective Rendering Pipeline

object \(OCS \)

world \(WC2 \)

viewing \(VCS \)

projection

transformation

modeling

transformations that are applied to object first are specified last

Viewing: Incremental Relative Motion

- how to move relative to current camera coordinate system?
 - what you see in the window
 - computation in coordinate system used to draw previous frame is simple:
 - incremental change \(I \) to current \(C \)
 - at time \(k \), want \(p' = I_k p_k \psi_{k-1} \ldots I_1 p_1 \psi_0 \)
 - each time we just want to premultiply by new matrix
 - \(p' = C p \)
 - but we know that OpenGL only supports postmultiply by new matrix
 - \(p' = C p \)

Viewing: More Camera Motion

- sneaky trick: OpenGL modelview matrix has the info we want!
 - dump out modelview matrix with \(\text{glGetDoublev()} \)
 - \(C \) current camera coordinate matrix
 - wipe the matrix stack with \(\text{glLoadIdentity()} \)
 - apply incremental update matrix \(\psi \)
 - apply current camera model coord \(M \)
 - must leave the modelview matrix unchanged by object transformations after your display call?
 - use push/pop
 - using OpenGL for storage and calculation
 - querying pipeline is expensive
 - but safe to do just once per frame
Caution: OpenGL Matrix Storage
• OpenGL internal matrix storage is columnwise, not rowwise.
 - opposite of standard C/C++/Java convention
 - possibly confusing if you look at the matrix from glGetDoublev()

Viewing: Virtual Trackball
• interface for spinning objects around
 - drag mouse to control rotation of view volume
 - orbit/spin metaphor
 - vs. flying/driving
• rolling glass trackball
 - center at screen origin, surrounds world
 - hemisphere "sticks up" in z, out of screen
 - rotate ball = spin world

Virtual Trackball
• know screen click: (x, 0, z)
 - want to infer point on trackball: (x,y,z)
 - ball is unit sphere, so ||x, y, z|| = 1.0
 - solve for y

Trackball Rotation
• correspondence:
 - moving point on plane from (x, 0, z) to (x, 0, c)
 - translating mouse from p1 (mouse down) to p2 (mouse up)
 - correspondences:
 - translating mouse from p1 (mouse down) to p2 (mouse up)
 - rotating about the axis n = p1 x p2

Manual Ray Intersection
• do all computation at application level
 - map selection point to a ray
 - intersect ray with all objects in scene.
• advantages
 - no library dependence
 - difficult to program
 - slow: work to do depends on total number and complexity of objects in scene
• disadvantages
 - hard to program
 - slow: work to do depends on total number and complexity of objects in scene

Bounding Extents
• keep track of axis-aligned bounding rectangles
• advantages
 - conceptually simple
 - easy to keep track of boxes in world space

Backbuffer Example
- use small rectangle around cursor for viewport
- assign per-object integer keys (names)
- redraw in special mode
- store hit list of objects in region
- examine hit list

Select/Hit
- small rectangle around cursor
- change coord sys so fills viewport
- why rectangle instead of point?
 - people aren't great at positioning mouse
 - Fitts' Law: time to acquire a target is function of the distance to and size of the target
 - allow several pixels of slop

Backbuffer Color Coding
- advantages
 - conceptually simple
 - variable precision
- disadvantages
 - introduce 2x redraw delay
 - backbuffer readback very slow

Backbuffer Color Coding
- use backbuffer for picking
 - create image as computational entity
 - never displayed to user
 - save each object's unique color for each pickable object
 - store in table
 - read back pixel at cursor location
 - check against table

Picking
- use small region around cursor for viewport
- assign per-object integer keys (names)
- redraw in special mode
- store hit list of objects in region
- examine hit list

Selection and Feedback Chapter
- all
- Now That You Know Chapter
- only Object Selection Using the Back Buffer

Interactive Object Selection
- move cursor over object, click
 - how to decide what is below?
 - inverse of rendering pipeline flow
 - from pixel back up to object
 - ambiguity
 - many 3D world objects map to same 2D point
- four common approaches
 - manual ray intersection
 - bounding extents
 - backbuffer color coding
 - selection region with hit list

Reading
- Red Book
 - Selection and Feedback Chapter
 - only Object Selection Using the Back Buffer

Bounding Extents
• disadvantages
 - low precision
 - must keep track of object-rectangle relationship
• extensions
 - do more sophisticated bound bookkeeping
 - first level: box check
 - second level: object check
Viewport
- nontrivial to compute
 - invert viewport matrix, set up new orthogonal projection
- simple utility command
 - `gluPickMatrix(x,y,w,h,viewport)`
 - `x,y`: cursor point
 - `w,h`: sensitivity/slop (in pixels)
 - push old setup first, so can pop it later

Render Modes
- `glRenderMode(mode)`
 - GL_RENDER: normal color buffer
 - default
 - GL_SELECT: selection mode for picking
 - (GL_FEEDBACK: report objects drawn)

Name Stack
- again, "names" are just integers
 - `glInitNames()`
- flat list
 - `glLoadIdentity(name)`
- or hierarchy supported by stack
 - `glPushMatrix(name)`, `glPopMatrix`
 - can have multiple names per object

Viewport
- `fourth component for transparency`
 - `(r,g,b,α)`
 - fraction we can see through
 - `c = αc_f + (1-α)c_b`
 - more on compositing later

Hit List
- `glSelectBuffer(bufferSize, *buffer)`
 - where to store hit list data
 - on hit, copy entire contents of name stack to output buffer.
 - can avoid drawing
 - can have multiple names per object

Integrated vs. Separate Pick Function
- integrate: use same function to draw and pick
 - simpler to code
 - name stack commands ignored in render mode
- separate: customize functions for each
 - potentially more efficient
 - can avoid drawing unpickable objects

Select/Hit
- advantages
 - faster
 - OpenGL support means hardware acceleration
 - avoid shading overhead
- flexible precision
 - size of region controllable
 - flexible architecture
 - custom code possible, e.g. guaranteed frame rate
- disadvantages
 - more complex

RGB Color
- triple `(r, g, b)` represents colors with amount of red, green, and blue
 - hardware-centric
 - used by OpenGL

Alpha
- fourth component for transparency
 - `(r,g,b,α)`
 - fraction we can see through
 - `c = αc_f + (1-α)c_b`
 - more on compositing later

Component Color
- component-wise multiplication of colors
 - `(a_0,a_1,a_2) * (b_0,b_1,b_2) = (a_0*b_0, a_1*b_1, a_2*b_2)`

Additive vs. Subtractive Colors
- additive: light
 - monitors, LCDs
 - `C * M = R`
- RGB model
 - `C * M = R`
- subtractive: pigment
 - printers
 - CMY model
 - dyes absorb light

Basics Of Color
- elements of color:
 - light x object = color
 - why does this work?
 - must dive into light, human vision, color spaces

Hierarchical Names Example
- `for(int i = 0; i < 2; i++) {
 for(int j = 0; j < 2; j++) {
 glPushName(i);
 for(int k = 0; k < 2; k++) {
 glPushMatrix();
 glPushName(j);
 for(int l = 0; l < 2; l++) {
 glPushMatrix();
 glCallList(i*10.0 + j * 10.0);
 }
 glPopMatrix();
 }
 glPopMatrix();
 }
}

OpenGL Precision Picking Hints
- `gluUnproject`
 - transform window coordinates to object coordinates given current projection and modelview matrices
 - use to create ray into scene from cursor location
 - call `gluUnProject` twice with same `(x,y)` mouse location
 - `z = near: (x,y,0)`
 - `z = far: (x,y,1)`
 - subtract near result from far result to get direction vector for ray
 - use this ray for line/polygon intersection

Reading for Color
- `RB Chap Color`
- `FCG Sections 3.2-3.3`
- `FCG Chap 20 Color`
- `FCG Chap 21.2.2 Visual Perception (Color)`
Basics of Color
- physics
 - illumination
 - electromagnetic spectra
- reflection
 - material properties
 - surface geometry and microgeometry
- polished versus matte versus brushed
- perception
 - physiology and neurophysiology
 - perceptual psychology

Light Sources
- common light sources differ in kind of spectrum they emit:
 - continuous spectrum
 - energy is emitted at all wavelengths
 - blackbody radiation
 - tungsten light bulbs
 - certain fluorescent lights
 - sunlight
 - electrical arcs
 - line spectrum
 - energy is emitted at certain discrete frequencies

Blackbody Radiation
- black body
 - dark material, so that reflection can be neglected
 - spectrum of emitted light changes with temperature
 - this is the origin of the term "color temperature"
 - e.g. when setting a white point for your monitor
 - cold: mostly infrared
 - hot: reddish
 - very hot: bluish
 - demo:

Electromagnetic Spectrum

Intensity vs. Brightness
- intensity: physical term
 - measured radiance energy emitted per unit time, per unit solid angle, and per unit projected area of the source (related to the luminance of the source)
- lightness/brightness: perceived intensity of light
 - nonlinear

Perceptual vs. Colorimetric Terms
- Perceptual
 - Hue
 - Saturation
 - Lightness
 - reflecting objects
 - Brightness
 - light sources
- Colorimetric
 - Dominant wavelength
 - Excitation purity
 - Luminance

Line Spectrum
- ionized gases
- lasers
- some fluorescent lamps

White Light and Color
- when white light is incident upon an object, some frequencies are reflected and some are absorbed by the object
- combination of frequencies present in the reflected light that determines what we perceive as the color of the object

Sunlight Spectrum
- spectral distribution: power vs. wavelength

Saturation or Purity of Light
- how washed out or how pure the color of the light appears
 - contribution of dominant light vs. other frequencies producing white light
 - saturation: how far is color from grey
 - pink is less saturated than red
 - sky blue is less saturated than royal blue

White Light
- sun or light bulbs emit all frequencies within visible range to produce what we perceive as "white light"

Continuous Spectrum
- sunlight
- various "daylight" lamps

Hue
- hue (or simply, "color") is dominant wavelength-frequency
 - integration of energy for all visible wavelengths is proportional to intensity of color

Saturation or Purity of Light
- how washed out or how pure the color of the light appears
 - contribution of dominant light vs. other frequencies producing white light
 - saturation: how far is color from grey
 - pink is less saturated than red
 - sky blue is less saturated than royal blue

Sunlight Spectrum
- spectral distribution: power vs. wavelength

Hue
- hue (or simply, "color") is dominant wavelength-frequency
 - integration of energy for all visible wavelengths is proportional to intensity of color

Saturation or Purity of Light
- how washed out or how pure the color of the light appears
 - contribution of dominant light vs. other frequencies producing white light
 - saturation: how far is color from grey
 - pink is less saturated than red
 - sky blue is less saturated than royal blue

White Light
- sun or light bulbs emit all frequencies within visible range to produce what we perceive as "white light"

Continuous Spectrum
- sunlight
- various "daylight" lamps

Hue
- hue (or simply, "color") is dominant wavelength-frequency
 - integration of energy for all visible wavelengths is proportional to intensity of color

Saturation or Purity of Light
- how washed out or how pure the color of the light appears
 - contribution of dominant light vs. other frequencies producing white light
 - saturation: how far is color from grey
 - pink is less saturated than red
 - sky blue is less saturated than royal blue

White Light
- sun or light bulbs emit all frequencies within visible range to produce what we perceive as "white light"

Continuous Spectrum
- sunlight
- various "daylight" lamps

Hue
- hue (or simply, "color") is dominant wavelength-frequency
 - integration of energy for all visible wavelengths is proportional to intensity of color

Saturation or Purity of Light
- how washed out or how pure the color of the light appears
 - contribution of dominant light vs. other frequencies producing white light
 - saturation: how far is color from grey
 - pink is less saturated than red
 - sky blue is less saturated than royal blue

White Light
- sun or light bulbs emit all frequencies within visible range to produce what we perceive as "white light"

Continuous Spectrum
- sunlight
- various "daylight" lamps

Hue
- hue (or simply, "color") is dominant wavelength-frequency
 - integration of energy for all visible wavelengths is proportional to intensity of color

Saturation or Purity of Light
- how washed out or how pure the color of the light appears
 - contribution of dominant light vs. other frequencies producing white light
 - saturation: how far is color from grey
 - pink is less saturated than red
 - sky blue is less saturated than royal blue

White Light
- sun or light bulbs emit all frequencies within visible range to produce what we perceive as "white light"

Continuous Spectrum
- sunlight
- various "daylight" lamps

Hue
- hue (or simply, "color") is dominant wavelength-frequency
 - integration of energy for all visible wavelengths is proportional to intensity of color

Saturation or Purity of Light
- how washed out or how pure the color of the light appears
 - contribution of dominant light vs. other frequencies producing white light
 - saturation: how far is color from grey
 - pink is less saturated than red
 - sky blue is less saturated than royal blue

White Light
- sun or light bulbs emit all frequencies within visible range to produce what we perceive as "white light"

Continuous Spectrum
- sunlight
- various "daylight" lamps

Hue
- hue (or simply, "color") is dominant wavelength-frequency
 - integration of energy for all visible wavelengths is proportional to intensity of color

Saturation or Purity of Light
- how washed out or how pure the color of the light appears
 - contribution of dominant light vs. other frequencies producing white light
 - saturation: how far is color from grey
 - pink is less saturated than red
 - sky blue is less saturated than royal blue

White Light
- sun or light bulbs emit all frequencies within visible range to produce what we perceive as "white light"