Viewing III

Week 4, Wed Jan 27

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010
News: Reminder

- extra TA office hours in lab 005
 - Tue 2-5 (Kai)
 - Wed 2-5 (Garrett)
 - Thu 1-3 (Garrett), Thu 3-5 (Kai)
 - Fri 2-4 (Garrett)
- Tamara's usual office hours in lab
 - Fri 4-5
Review: Convenient Camera Motion

- rotate/translate/scale difficult to control
- arbitrary viewing position
 - eye point, gaze/lookat direction, up vector
Review: World to View Coordinates

• translate **eye** to origin
• rotate **view** vector (**lookat** – **eye**) to **w** axis
• rotate around **w** to bring **up** into **vw**-plane
Review: W2V vs. V2W

- $M_{W2V} = TR$
- $T = \begin{bmatrix} 1 & 0 & 0 & e_x \\ 0 & 1 & 0 & e_y \\ 0 & 0 & 1 & e_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$
- $R = \begin{bmatrix} u_x & v_x & w_x & 0 \\ u_y & v_y & w_y & 0 \\ u_z & v_z & w_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

- we derived position of camera in world
 - invert for world with respect to camera
- $M_{V2W} = (M_{W2V})^{-1} = R^{-1}T^{-1}$

$M_{\text{view2world}} = \begin{bmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ w_x & w_y & w_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -e_x \\ 0 & 1 & 0 & -e_y \\ 0 & 0 & 1 & -e_z \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} u_x & u_y & u_z & -e_x \\ v_x & v_y & v_z & -e_y \\ w_x & w_y & w_z & -e_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$
Review: Graphics Cameras

- real pinhole camera: image inverted

- computer graphics camera: convenient equivalent
Review: Projective Transformations

- planar geometric projections
 - planar: onto a plane
 - geometric: using straight lines
 - projections: 3D -> 2D
- aka projective mappings
- counterexamples?
Projective Transformations

• properties
 • lines mapped to lines and triangles to triangles
 • parallel lines do NOT remain parallel
 • e.g. rails vanishing at infinity

• affine combinations are NOT preserved
 • e.g. center of a line does not map to center of projected line (perspective foreshortening)
Perspective Projection

- project all geometry
 - through common center of projection (eye point)
 - onto an image plane
Perspective Projection

how tall should this bunny be?

center of projection
(eye point)

projection plane

how tall should this bunny be?
Basic Perspective Projection

similar triangles

\[\frac{y'}{d} = \frac{y}{z} \rightarrow y' = \frac{y \cdot d}{z} \]

\[\frac{x'}{d} = \frac{x}{z} \rightarrow x' = \frac{x \cdot d}{z} \]

but \[z' = d \]

- nonuniform foreshortening
- not affine
Perspective Projection

• desired result for a point \([x, y, z, 1]^T\) projected onto the view plane:

\[
\frac{x'}{d} = \frac{x}{z}, \quad \frac{y'}{d} = \frac{y}{z}
\]

\[
x' = \frac{x \cdot d}{z}, \quad y' = \frac{y \cdot d}{z}, \quad z' = d
\]

• what could a matrix look like to do this?
Simple Perspective Projection Matrix

$$\begin{bmatrix}
\frac{x}{z/d} \\
\frac{y}{z/d} \\
\frac{y}{z/d} \\
\frac{d}{z/d}
\end{bmatrix}$$
Simple Perspective Projection Matrix

\[
\begin{bmatrix}
\frac{x}{z/d} \\
\frac{y}{z/d} \\
\frac{z}{d}
\end{bmatrix}
\]

is homogenized version of

\[
\begin{bmatrix}
x \\
y \\
z \\
\frac{z}{d}
\end{bmatrix}
\]

where w = z/d
Simple Perspective Projection Matrix

\[
\begin{bmatrix}
\frac{x}{z/d} \\
\frac{y}{z/d} \\
\frac{z/d}{d}
\end{bmatrix}
\]

is homogenized version of

where \(w = z/d \)

\[
\begin{bmatrix}
x \\
y \\
z \\
z/d
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1/d & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]
Perspective Projection

- expressible with 4x4 homogeneous matrix
 - use previously untouched bottom row
- perspective projection is irreversible
 - many 3D points can be mapped to same (x, y, d) on the projection plane
 - no way to retrieve the unique z values
Moving COP to Infinity

- as COP moves away, lines approach parallel
- when COP at infinity, orthographic view
Orthographic Camera Projection

- camera’s back plane parallel to lens
- infinite focal length
- no perspective convergence

\[
\begin{bmatrix}
 x_p \\
 y_p \\
 z_p \\
 1
\end{bmatrix}
= \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]

Just throw away z values
Perspective to Orthographic

- transformation of space
- center of projection moves to infinity
- view volume transformed
 - from frustum (truncated pyramid) to parallelepiped (box)
View Volumes

- specifies field-of-view, used for clipping
- restricts domain of z stored for visibility test
Canonical View Volumes

- standardized viewing volume representation

perspective

orthographic
orthogonal
parallel

x or y = +/- z
Why Canonical View Volumes?

• permits standardization
 • clipping
 • easier to determine if an arbitrary point is enclosed in volume with canonical view volume vs. clipping to six arbitrary planes
 • rendering
 • projection and rasterization algorithms can be reused
Normalized Device Coordinates

• convention
 • viewing frustum mapped to specific parallelepiped
 • Normalized Device Coordinates (NDC)
 • same as clipping coords
 • only objects inside the parallelepiped get rendered
 • which parallelepiped?
 • depends on rendering system
Normalized Device Coordinates

left/right $x = +/- 1$, top/bottom $y = +/- 1$, near/far $z = +/- 1$

Camera coordinates

Frustum

NDC

$x=1$
$z=-1$
$z=1$

$x=-1$
$z=-1$
Understanding Z

• z axis flip changes coord system handedness
• RHS before projection (eye/view coords)
• LHS after projection (clip, norm device coords)
Understanding Z

near, far always positive in OpenGL calls

\[
\text{glOrtho}(\text{left}, \text{right}, \text{bot}, \text{top}, \text{near}, \text{far})
\]

\[
\text{glFrustum}(\text{left}, \text{right}, \text{bot}, \text{top}, \text{near}, \text{far})
\]

\[
\text{glPerspective}(\text{fovy}, \text{aspect}, \text{near}, \text{far})
\]
Understanding Z

• why near and far plane?
 • near plane:
 • avoid singularity (division by zero, or very small numbers)
 • far plane:
 • store depth in fixed-point representation (integer), thus have to have fixed range of values (0…1)
 • avoid/reduce numerical precision artifacts for distant objects
Orthographic Derivation

- scale, translate, reflect for new coord sys

VCS
- x=left
- y=top
- z=-far

y=bottom

z=-near

NDCS
- x=right
- y=-1
- z=1

(1,1,1)

(-1,-1,-1)
Orthographic Derivation

- scale, translate, reflect for new coord sys

\[y' = a \cdot y + b \]
\[y = top \rightarrow y' = 1 \]
\[y = bot \rightarrow y' = -1 \]
Orthographic Derivation

- scale, translate, reflect for new coord sys

\[y' = a \cdot y + b \]

\[y = \text{top} \rightarrow y' = 1 \]
\[1 = a \cdot \text{top} + b \]

\[y = \text{bot} \rightarrow y' = -1 \]
\[-1 = a \cdot \text{bot} + b \]

\[b = 1 - a \cdot \text{top}, b = -1 - a \cdot \text{bot} \]

\[1 - a \cdot \text{top} = -1 - a \cdot \text{bot} \]

\[1 - (-1) = -a \cdot \text{bot} - (-a \cdot \text{top}) \]

\[2 = a(-\text{bot} + \text{top}) \]

\[a = \frac{2}{\text{top} - \text{bot}} \]

\[b = 1 - \frac{2 \cdot \text{top}}{\text{top} - \text{bot}} \]

\[b = \frac{(\text{top} - \text{bot}) - 2 \cdot \text{top}}{\text{top} - \text{bot}} \]

\[b = \frac{-\text{top} - \text{bot}}{\text{top} - \text{bot}} \]
Orthographic Derivation

- scale, translate, reflect for new coord sys

\[\begin{align*}
y' &= a \cdot y + b \\
y &= \text{top} \rightarrow y' &= 1 \\
y &= \text{bot} \rightarrow y' &= -1
\end{align*} \]

\[\begin{align*}
a &= \frac{2}{\text{top} - \text{bot}} \\
b &= -\frac{\text{top} + \text{bot}}{\text{top} - \text{bot}}
\end{align*} \]

same idea for right/left, far/near
Orthographic Derivation

- scale, translate, reflect for new coord sys

\[
P' = \begin{bmatrix}
\frac{2}{\text{right} - \text{left}} & 0 & 0 & -\frac{\text{right} + \text{left}}{\text{right} - \text{left}} \\
0 & \frac{2}{\text{top} - \text{bot}} & 0 & -\frac{\text{top} + \text{bot}}{\text{top} - \text{bot}} \\
0 & 0 & \frac{-2}{\text{far} - \text{near}} & -\frac{\text{far} + \text{near}}{\text{far} - \text{near}} \\
0 & 0 & 0 & 1
\end{bmatrix} P
\]
Orthographic Derivation

- **scale**, translate, reflect for new coord sys

\[
P' = \begin{bmatrix}
\frac{2}{\text{right} - \text{left}} & 0 & 0 & -\frac{\text{right} + \text{left}}{\text{right} - \text{left}} \\
0 & \frac{2}{\text{top} - \text{bot}} & 0 & -\frac{\text{top} + \text{bot}}{\text{top} - \text{bot}} \\
0 & 0 & \frac{-2}{\text{far} - \text{near}} & -\frac{\text{far} + \text{near}}{\text{far} - \text{near}} \\
0 & 0 & 0 & 1
\end{bmatrix} \quad P
\]
Orthographic Derivation

- scale, translate, reflect for new coord sys

\[
P' = \begin{bmatrix}
\frac{2}{right - left} & 0 & 0 & \frac{-right + left}{right - left} \\
0 & \frac{2}{top - bot} & 0 & \frac{-top + bot}{top - bot} \\
0 & 0 & \frac{-2}{far - near} & \frac{-far + near}{far - near} \\
0 & 0 & 0 & 1
\end{bmatrix} P
\]
Orthographic Derivation

• scale, translate, \textbf{reflect} for new coord sys

\[
P' = \begin{bmatrix}
\frac{2}{\text{right} - \text{left}} & 0 & 0 & -\frac{\text{right} + \text{left}}{\text{right} - \text{left}} \\
0 & \frac{2}{\text{top} - \text{bot}} & 0 & -\frac{\text{top} + \text{bot}}{\text{top} - \text{bot}} \\
0 & 0 & -2 & -\frac{\text{far} + \text{near}}{\text{far} - \text{near}} \\
0 & 0 & 0 & 1
\end{bmatrix}
P
\]
Orthographic OpenGL

```c
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(left, right, bot, top, near, far);
```
Demo

• Brown applets: viewing techniques
 • parallel/orthographic cameras
 • projection cameras

• http://www.cs.brown.edu/exploratories/freeSoftware/catalogs/viewing_techniques.html
Projections II
Asymmetric Frusta

• our formulation allows asymmetry
• why bother?
Asymmetric Frusta

- our formulation allows asymmetry
- why bother? binocular stereo
 - view vector not perpendicular to view plane
Simpler Formulation

- left, right, bottom, top, near, far
 - nonintuitive
 - often overkill
- look through window center
 - symmetric frustum
- constraints
 - left = -right, bottom = -top
Field-of-View Formulation

- FOV in one direction + aspect ratio (w/h)
 - determines FOV in other direction
 - also set near, far (reasonably intuitive)
Perspective OpenGL

```c
glMatrixMode(GL_PROJECTION);
glLoadIdentity();

glFrustum(left,right,bot,top,near,far);
```

or

```c
glPerspective(fovy,aspect,near,far);
```
Demo: Frustum vs. FOV

• Nate Robins tutorial (take 2):
 • http://www.xmission.com/~nate/tutors.html
Projective Rendering Pipeline

OCS - object/model coordinate system
WCS - world coordinate system
VCS - viewing/camera/eye coordinate system
CCS - clipping coordinate system
NDCS - normalized device coordinate system
DCS - device/display/screen coordinate system

O2W: modeling transformation
W2V: viewing transformation
V2C: projection transformation
C2N: perspective divide
N2D: viewport transformation
Perspective Warp

- warp perspective view volume to orthogonal view volume
 - render all scenes with orthographic projection!
 - aka perspective normalization
Perspective Warp

- perspective viewing frustum transformed to cube
- orthographic rendering of warped objects in cube produces same image as perspective rendering of original frustum
Predistortion
Projective Rendering Pipeline

OCS - object/model coordinate system
WCS - world coordinate system
VCS - viewing/camera/eye coordinate system
CCS - clipping coordinate system
NDCS - normalized device coordinate system
DCS - device/display/screen coordinate system

O2W OCS → modeling transformation → W2V WCS → viewing transformation → V2C VCS

projection transformation
perspective divide
viewport transformation

C2N
N2D

clipping
normalized
device
ND

object
world
viewing

49
Separate Warp From Homogenization

- warp requires only standard matrix multiply
 - distort such that orthographic projection of distorted objects shows desired perspective projection
 - w is changed
 - clip after warp, before divide
 - division by w: homogenization
Perspective Divide Example

• specific example
• assume image plane at $z = -1$
• a point $[x, y, z, I]^T$ projects to $[-x/z, -y/z, -z/z, I]^T \equiv [x, y, z, -z]^T$
Perspective Divide Example

\[
T \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ -z \end{bmatrix} = \begin{bmatrix} -x/z \\ -y/z \\ -1 \\ 1 \end{bmatrix}
\]

- after homogenizing, once again w=1
Perspective Normalization

- matrix formulation

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{1}{d} & 0 \\
0 & 0 & \frac{1}{d} & \frac{1}{d}
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
=
\begin{bmatrix}
x \\
y \\
\frac{y}{d - a} \\
\frac{z}{d}
\end{bmatrix}
\]

- warp and homogenization both preserve relative depth (z coordinate)
Demo

- Brown applets: viewing techniques
 - parallel/orthographic cameras
 - projection cameras