Transformations II
Week 2, Fri Jan 15

13
2D Translation

2D Translation

15
Linear Transformations

Challenge

Readings for Transformations I-IV

Review: Event-Driven Programming

• transformation matrices

- • linear transformations are combinations of

- • shear

- • scale

- • rotate

- • reflect

- • properties of linear transformations

- • matrix multiplication

- • for everything except translation

- • how to do everything with multiplication?

- • then just do composition, no special cases

- • homogeneous coordinates trick

- • represent 2D coordinates (x,y) with 3-vector (x,y,1)

- • matrix multiplication

- • vs. procedural

- • control flow through event callbacks

- • key was pressed

- • mouse moved

- • callback functions called from main loop when events occur

- • mouse/keyboard state setting vs. redrawing

News

• prereq letters

2D Rotation

Shear

Reflection

Shear

Review: 2D Rotations

Review: 2D Transformations

2D Translation

2D Translation

2D Translation

Challenge

News

Readings for Transformations I-IV

Review: Event-Driven Programming

• transformation matrices

- • linear transformations are combinations of

- • shear

- • scale

- • rotate

- • reflect

- • properties of linear transformations

- • matrix multiplication

- • for everything except translation

- • how to do everything with multiplication?

- • then just do composition, no special cases

- • homogeneous coordinates trick

- • represent 2D coordinates (x,y) with 3-vector (x,y,1)

- • matrix multiplication

- • vs. procedural

- • control flow through event callbacks

- • key was pressed

- • mouse moved

- • callback functions called from main loop when events occur

- • mouse/keyboard state setting vs. redrawing

13
2D Translation

2D Translation

15
Linear Transformations

Challenge

Readings for Transformations I-IV

Review: Event-Driven Programming

• transformation matrices

- • linear transformations are combinations of

- • shear

- • scale

- • rotate

- • reflect

- • properties of linear transformations

- • matrix multiplication

- • for everything except translation

- • how to do everything with multiplication?

- • then just do composition, no special cases

- • homogeneous coordinates trick

- • represent 2D coordinates (x,y) with 3-vector (x,y,1)

- • matrix multiplication

- • vs. procedural

- • control flow through event callbacks

- • key was pressed

- • mouse moved

- • callback functions called from main loop when events occur

- • mouse/keyboard state setting vs. redrawing

News

• prereq letters

2D Rotation

Shear

Reflection

Shear

Review: 2D Rotations

Review: 2D Transformations

2D Translation

2D Translation

2D Translation

Challenge

News

Readings for Transformations I-IV

Review: Event-Driven Programming

• transformation matrices

- • linear transformations are combinations of

- • shear

- • scale

- • rotate

- • reflect

- • properties of linear transformations

- • matrix multiplication

- • for everything except translation

- • how to do everything with multiplication?

- • then just do composition, no special cases

- • homogeneous coordinates trick

- • represent 2D coordinates (x,y) with 3-vector (x,y,1)

- • matrix multiplication

- • vs. procedural

- • control flow through event callbacks

- • key was pressed

- • mouse moved

- • callback functions called from main loop when events occur

- • mouse/keyboard state setting vs. redrawing

News

• prereq letters

2D Rotation

Shear

Reflection

Shear

Review: 2D Rotations

Review: 2D Transformations

2D Translation

2D Translation

2D Translation

Challenge
Homogeneous Coordinates
- our 2D transformation matrices are now 3x3:
 - point in 2D cartesian
 - use rightmost column!

Homogeneous Coordinates Geometrically
- point in 2D cartesian + weight w = point P in 3D homog. coords
- multiply by w to get (x/w, y/w, 1)
- projects line to point onto w=1 plane
- like normalizing, one dimension up when w=0, consider it as direction
- points at infinity
- these points cannot be homogenized
- lies on w=0 plane

Summary: Transformations
- may seem unintuitive, but they make graphics operations much easier
- allow all affine transformations to be expressed through matrix multiplication
- origin does not necessarily map to origin
- lines map to lines
- parallel lines remain parallel
- ratios are preserved
- closed under composition

3D Rotation About Z Axis
- around z axis:
 - \(x' = x \cos \theta - y \sin \theta \)
 - \(y' = x \sin \theta + y \cos \theta \)
 - \(z' = z \)

Homogeneous Coordinates Summary
- may seem unintuitive, but they make graphics operations much easier
- allow all affine transformations to be expressed through matrix multiplication
- origin does not necessarily map to origin
- lines map to lines
- parallel lines remain parallel
- ratios are preserved
- closed under composition

3D Translation
- \(T(x, y, z) = T(x - x_0, y - y_0, z - z_0) \)

3D Scaling
- \(S(x, y, z) = S(x/k, y/k, z/k) \) (R is orthogonal)

3D Shear
- \(S(x, y, z) = S(x, y + ax, z + bx) \)

Undoing Transformations: Inverses
- \(T^{-1}(x, y) = T^{T}(x, y) \)
- \(R^{-1}(x, y) = R^{T}(x, y) \) (R is orthogonal)

Composing Transformations
- translation
 - \(T_1 = T_1(x_1, y_1, z_1) \)
 - \(T_2 = T_2(x_2, y_2, z_2) \)
 - \(T_1 \circ T_2 = T_2 \circ T_1 \)

- scaling
 - \(S \times S \)

- rotation
 - \(R \times R \)
Composing Transformations

Ta Tb = Tb Ta, but Ra Tb = Tb Ra, but Ra and Ta
• rotations around same axis commute
• rotations around different axes do not commute
• rotations and translations do not commute

Interpreting Transformations

Matrix Composition
• matrices are convenient, efficient way to represent series of
 • general purpose representation
 • hardware matrix multiply
 • matrix multiplication is associative
 • p' = (T'R'S')p
 • p' = (T'R)'S'p
• procedure
 • correctly order your matrices!
 • multiply matrices together
 • result is one matrix, multiply vertices by this matrix
 • all vertices easily transformed with one matrix multiply

Rotation About a Point: Moving Object

p' = TRp
• which direction to read?
 • right to left
 • interpret operations wrt fixed coordinates
 • moving object
 • left to right
 • interpret operations wrt local coordinates
 • changing coordinate system

OpenGL pipeline ordering!
 • same relative position between object and basis vectors

Rotation: Changing Coordinate Systems

• same example: rotation around arbitrary center
 • rotate about p by θ
 • translate p to origin
 • rotate about origin
 • translate p back

General Transform Composition
• transformation of geometry into coordinate system where operation becomes simpler
 • typically translate to origin
 • perform operation
 • transform geometry back to original coordinate system
Rotation About an Arbitrary Axis

- axis defined by two points
- translate point to the origin
- rotate to align axis with z-axis (or x or y)
- perform rotation
- undo aligning rotations
- undo translation

Arbitrary Rotation

- arbitrary rotation: change of basis
- given two orthonormal coordinate systems \(XYZ\) and \(ABC\)
- if A's location in the \(XYZ\) coordinate system is \((a_x, a_y, a_z, 1)\), ...
- transformation from one to the other is matrix \(R\) whose columns are \(A, B, C\):

\[
R(X) = \begin{bmatrix}
 a_x & b_x & c_x & 0 \\
 a_y & b_y & c_y & 0 \\
 a_z & b_z & c_z & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
 a_x \\
 a_y \\
 a_z \\
 1
\end{bmatrix} = A
\]

\[
\begin{bmatrix}
 b_x \\
 b_y \\
 b_z \\
 1
\end{bmatrix} = B
\]

\[
\begin{bmatrix}
 c_x \\
 c_y \\
 c_z \\
 1
\end{bmatrix} = C
\]