Textures II

Week 10, Mon Mar 22

13
Texture Mapping
- texture coordinate interpolation
- perspective foreshortening problem
- texture coordinate interpolation
- perspective correct interpolation
- α, β, γ
 - barycentric coordinates of a point P in a triangle
 - s_0, s_1, s_2
 - texture coordinates of vertices
 - w_0, w_1, w_2
 - homogeneous coordinates of vertices

14
Interpolation: Screen vs. World Space
- screen space interpolation incorrect
- problem ignored with shading, but artifacts more visible with texturing
- screen space interpolation incorrect

15
Texture Coordinate Interpolation
- perspective correct interpolation
- α, β, γ
 - barycentric coordinates of a point P in a triangle
 - s_0, s_1, s_2
 - texture coordinates of vertices
 - w_0, w_1, w_2
 - homogeneous coordinates of vertices

16
Reconstruction
- image courtesy of Kiriakos Kutulakos, U Rochester
- image courtesy of Kiriakos Kutulakos, U Rochester
Reconstruction

- how to deal with:
 - pixels that are much larger than texels?
 - apply filtering, "averaging"
 - pixels that are much smaller than texels?
 - interpolate

MIPmapping

- use "image pyramid" to precompute averaged versions of the texture
 - Without MIP-mapping
 - With MIP-mapping

- store whole pyramid in single block of memory

MIPmaps

- multum in parvo -- many things in a small place
 - precompute a series of prefiltered texture maps of decreasing resolutions
 - requires more texture storage
 - avoid shimmering and flashing as objects move
 - prefiltering with different OpenGL functions
 - automatically constructs a family of textures from original texture size down to 1x1

MIPmap storage

- only 1/3 more space required

Texture Parameters

- in addition to color can control other material/object properties
 - surface normal (bump mapping)
 - reflected color (environment mapping)

Bump Mapping: Normals As Texture

- object surface often not smooth -- to recreate correctly need complex geometry model
 - can control shape "effect" by locally perturbing surface normal
 - random perturbation
 - directional change over region

Displacement Mapping

- bump mapping gets silhouettes wrong
 - shadows wrong too
 - change surface geometry instead
 - only recently available with realtime graphics
 - need to subdivide surface

Environment Mapping

- cheap way to achieve reflective effect
 - generate image of surrounding
 - map to object as texture

Displacement Mapping

- direction of reflection vector r selects the face of the cube to be indexed
 - co-ordinate with largest magnitude
 - e.g., the vector (-0.2, 0.5, -0.84) selects the –Z face
 - remaining two coordinates (normalized by the 3rd coordinate) selects the pixel from the face.
 - e.g., (-0.2, 0.5) gets mapped to (0.38, 0.80).
 - difficulty in interpolating across faces

Sphere Mapping

- texture is distorted fish-eye view
 - point camera at mirrored sphere
 - spherical texture mapping creates texture coordinates that correctly index into this texture map

Cube Mapping

- 6 planar textures, sides of cube
 - point camera in 6 different directions, facing out from origin
Volumetric Texture

- Define texture pattern over 3D domain - 3D space containing the object.
- Texture function can be digitized or procedural.
- For each point on object, compute texture from point location in space.
- Common for natural material/irregular textures (stone, wood, etc...)

Volumetric Bump Mapping

Marble

Bump

Volumetric Texture Principles

- 3D function $\rho(x,y,z)$
- Texture space - 3D space that holds the texture (discrete or continuous).
- Rendering: for each rendered point $P(x,y,z)$ compute $\rho(x,y,z)$
- Volumetric texture mapping function/space transformed with objects.