Geometric Transformations
- similar goal as in rendering pipeline:
 - modeling scenes more convenient using different coordinate systems for individual objects
- problem:
 - not all object representations are easy to transform
 - problem is fixed in rendering pipeline by restriction to polygons, which are affine invariant
 - ray tracing has different solution
 - ray itself is always affine invariant
 - thus: transform ray into object coordinates!

<table>
<thead>
<tr>
<th>Ray-Tracing</th>
<th>Geometric Transformations</th>
<th>Total Internal Reflection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| - issues:
 - generation of rays
 - intersection of rays with geometric primitives
 - geometric transformations
 - lighting and shading
 - efficient data structures so we don't have to test intersection with every object |
| - method in book is elegant but a bit complex
- easier approach: triangle is just a polygon
- intersect ray with plane

![Ray-Triangle Intersection](image)

- normal: $\mathbf{n} = (\mathbf{b} - \mathbf{a}) \times (\mathbf{c} - \mathbf{a})$
- ray: $\mathbf{x} = \mathbf{e} + \lambda \mathbf{d}$
- plane: $(\mathbf{p} - \mathbf{x}) \cdot \mathbf{n} = 0$

 $\mathbf{p} \cdot \mathbf{n} - \mathbf{e} \cdot \mathbf{n} + \lambda \mathbf{d} \cdot \mathbf{n} = 0$
- $\lambda = \frac{\mathbf{p} \cdot \mathbf{n} - \mathbf{e} \cdot \mathbf{n}}{\mathbf{d} \cdot \mathbf{n}}$

 λ is a or b or c

- check if ray inside triangle

<table>
<thead>
<tr>
<th>Global Shadows</th>
</tr>
</thead>
<tbody>
<tr>
<td>approach</td>
</tr>
</tbody>
</table>
- to test whether point is in shadow, send out shadow rays to all light sources
- if ray hits another object, the point lies in shadow

<table>
<thead>
<tr>
<th>Global Reflections/Refractions</th>
</tr>
</thead>
<tbody>
<tr>
<td>approach</td>
</tr>
</tbody>
</table>
- send rays out in reflected and refracted direction to gather incoming light
- that light is multiplied by local surface color and added to result of local shading

<table>
<thead>
<tr>
<th>Example Images</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Radiosity
- radiosity definition
 - rate at which energy emitted or reflected by a surface
- radiosity methods
 - capture diffuse-diffuse bouncing of light
 - indirect effects difficult to handle with raytracing
- store and access only pixels
- no geometry, no light simulation...
- input: set of images
- output: image from new viewpoint

Subsurface Scattering: Translucency
- light enters and leaves at *different* locations on the surface
- bounces around inside
- technical Academy Award, 2003
- Jensen, Marschner, Hanrahan

Subsurface Scattering: Marble

Subsurface Scattering: Milk vs. Paint

Subsurface Scattering: Skin

Non-Photorealistic Rendering
- simulate look of hand-drawn sketches or paintings, using digital models
- store and access only pixels
- no geometry, no light simulation...
- input: set of images
- output: image from new viewpoint
- surprisingly large set of possible new viewpoints
- interpolation allows translation, not just rotation
 - lightfield, lumigraph: translate outside convex hull of object
 - QuickTime/VR: camera moves, no translation
- can point camera in or out

Non-Photorealistic Shading
- cool-to-warm shading

Better Global Illumination
- ray-tracing: great specular, approx. diffuse
- view dependent
- radiosity: great diffuse, specular ignored
- view independent, mostly-enclosed volumes
- photon mapping: superset of raytracing and radiosity

Ray Tracing
- photon mapping: superset of raytracing and radiosity

Image-Based Modelling and Rendering
- store and access only pixels
- no geometry, no light simulation...
- input: set of images
- output: image from new viewpoint
- surprisingly large set of possible new viewpoints
- interpolation allows translation, not just rotation
 - lightfield, lumigraph: translate outside convex hull of object
 - QuickTime/VR: camera moves, no translation
- can point camera in or out