Math Review
Rendering Pipeline

Week 2, Mon Jan 14

News

• Tamara lecturing now!

• Labs start this week
 • Mon 12-1, Tue 1-2, Thu 10-11, Fri 12-1

• Reminder: my office hours Wed/Fri 2-3
 • in your 011 lab
 • or by appointment in my X661 office

• Leftover handouts will be in 011 lab
Today’s Readings

• today
 • RB Chap Introduction to OpenGL
 • RB Chap State Management and Drawing Geometric Objects
 • RB App Basics of GLUT (Aux in v 1.1)

• RB = Red Book = OpenGL Programming Guide
• http://fly.cc.fer.hr/~unreal/theredbook/
Readings for Next Four Lectures

• FCG Chap 6 Transformation Matrices
 • except 6.1.6, 6.3.1
• FCG Sect 13.3 Scene Graphs
• RB Chap Viewing
 • Viewing and Modeling Transforms until Viewing Transformations
 • Examples of Composing Several Transformations through Building an Articulated Robot Arm
• RB Appendix Homogeneous Coordinates and Transformation Matrices
 • until Perspective Projection
• RB Chap Display Lists
Correction: Vector-Vector Multiplication

- multiply: vector * vector = scalar
- dot product, aka inner product

\[
\mathbf{u} \cdot \mathbf{v} = (u_1 \cdot v_1) + (u_2 \cdot v_2) + (u_3 \cdot v_3)
\]

- geometric interpretation
 - lengths, angles
 - can find angle between two vectors

\[
\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta
\]
Correction: Dot Product Example

\[
\begin{bmatrix}
u_1 \\
u_2 \\
u_3
\end{bmatrix} \cdot \begin{bmatrix}
v_1 \\
v_2 \\
v_3
\end{bmatrix} = (u_1 \cdot v_1) + (u_2 \cdot v_2) + (u_3 \cdot v_3)
\]

\[
\begin{bmatrix}
6 \\
1 \\
2
\end{bmatrix} \cdot \begin{bmatrix}
1 \\
7 \\
3
\end{bmatrix} = (6 \cdot 1) + (1 \cdot 7) + (2 \cdot 3) = 6 + 7 + 6 = 19
\]
Review: Working with Frames

\[p = o + xi + yj \]

\[F_1 \quad p = (3, -1) \]
\[F_2 \quad p = (-1.5, 2) \]
\[F_3 \quad p = (1, 2) \]
More: Working with Frames

\[p = o + xi + yj \]

\[F_1 \quad p = (3,-1) \]

\[F_2 \quad p = (-1.5,2) \]

\[F_3 \quad p = (1,2) \]
More: Working with Frames

\[p = o + x\mathbf{i} + y\mathbf{j} \]

\[F_1 \quad p = (3,-1) \]
\[F_2 \quad p = (-1.5,2) \]
\[F_3 \quad p = (1,2) \]
More: Working with Frames

\[p = o + xi + yj \]

\begin{align*}
F_1 & \quad p = (3,-1) \\
F_2 & \quad p = (-1.5,2) \\
F_3 & \quad p = (1,2)
\end{align*}
Lines

- slope-intercept form
 - $y = mx + b$

- implicit form
 - $y - mx - b = 0$
 - $Ax + By + C = 0$
 - $f(x,y) = 0$

$m = -\frac{b}{a}$
Implicit Functions

- find where function is 0
 - plug in \((x,y)\), check if
 - 0: on line
 - < 0: inside
 - > 0: outside
- analogy: terrain
 - sea level: \(f=0\)
 - altitude: function value
 - topo map: equal-value contours (level sets)
Implicit Circles

- \(f(x, y) = (x - x_c)^2 + (y - y_c)^2 - r^2 \)
 - circle is points \((x,y)\) where \(f(x,y) = 0\)
- \(p = (x, y), c = (x_c, y_c) : (p - c) \cdot (p - c) - r^2 = 0 \)
 - points \(p\) on circle have property that vector from \(c\) to \(p\) dotted with itself has value \(r^2\)
- \(\|p - c\|^2 - r^2 = 0 \)
 - points \(p\) on the circle have property that squared distance from \(c\) to \(p\) is \(r^2\)
- \(\|p - c\| - r = 0 \)
 - points \(p\) on circle are those a distance \(r\) from center point \(c\)
Parametric Curves

- parameter: index that changes continuously
 - \((x,y)\): point on curve
 - \(t\): parameter
- vector form
 - \(\mathbf{p} = f(t)\)
2D Parametric Lines

- \[
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
=
\begin{bmatrix}
 x_0 + t(x_1 - x_0) \\
 y_0 + t(y_1 - y_0)
\end{bmatrix}
\]

- \(p(t) = p_0 + t(p_1 - p_0) \)
- \(p(t) = o + t(d) \)
- start at point \(p_0 \),
go towards \(p_1 \),
according to parameter \(t \)
 - \(p(0) = p_0, \ p(1) = p_1 \)
Linear Interpolation

- parametric line is example of general concept

 \[p(t) = p_0 + t(p_1 - p_0) \]

 - interpolation

 - \(p \) goes through \(a \) at \(t = 0 \)

 - \(p \) goes through \(b \) at \(t = 1 \)

 - linear

 - weights \(t \), \((1-t) \) are linear polynomials in \(t \)
Matrix-Matrix Addition

• add: matrix + matrix = matrix

$$\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} + \begin{bmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{bmatrix} = \begin{bmatrix} n_{11} + m_{11} & n_{12} + m_{12} \\ n_{21} + m_{21} & n_{22} + m_{22} \end{bmatrix}$$

• example

$$\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} + \begin{bmatrix} -2 & 5 \\ 7 & 1 \end{bmatrix} = \begin{bmatrix} 1+(-2) & 3+5 \\ 2+7 & 4+1 \end{bmatrix} = \begin{bmatrix} -1 & 8 \\ 9 & 5 \end{bmatrix}$$
Scalar-Matrix Multiplication

- multiply: scalar * matrix = matrix

\[
a \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} = \begin{bmatrix} a \cdot m_{11} & a \cdot m_{12} \\ a \cdot m_{21} & a \cdot m_{22} \end{bmatrix}
\]

- example

\[
3 \begin{bmatrix} 2 & 4 \\ 1 & 5 \end{bmatrix} = \begin{bmatrix} 3 \cdot 2 & 3 \cdot 4 \\ 3 \cdot 1 & 3 \cdot 5 \end{bmatrix} = \begin{bmatrix} 6 & 12 \\ 3 & 15 \end{bmatrix}
\]
Matrix-Matrix Multiplication

- can only multiply (n,k) by (k,m):
 number of left cols = number of right rows
 - legal
 \[
 \begin{bmatrix}
 a & b & c \\
 e & f & g \\
 \end{bmatrix}
 \begin{bmatrix}
 h & i \\
 j & k \\
 l & m \\
 \end{bmatrix}
 \]
 - undefined
 \[
 \begin{bmatrix}
 a & b & c \\
 e & f & g \\
 o & p & q \\
 \end{bmatrix}
 \begin{bmatrix}
 h & i \\
 j & k \\
 \end{bmatrix}
 \]
Matrix-Matrix Multiplication

- row by column

\[
\begin{bmatrix}
m_{11} & m_{12} \\
m_{21} & m_{22} \\
\end{bmatrix}
\begin{bmatrix}
n_{11} & n_{12} \\
n_{21} & n_{22} \\
\end{bmatrix} =
\begin{bmatrix}
p_{11} & p_{12} \\
p_{21} & p_{22} \\
\end{bmatrix}
\]

\[p_{11} = m_{11}n_{11} + m_{12}n_{21}\]
Matrix-Matrix Multiplication

- row by column

\[
\begin{bmatrix}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{bmatrix}
\begin{bmatrix}
n_{11} & n_{12} \\
n_{21} & n_{22}
\end{bmatrix}
=
\begin{bmatrix}
p_{11} & p_{12} \\
p_{21} & p_{22}
\end{bmatrix}
\]

\[
p_{11} = m_{11}n_{11} + m_{12}n_{21}
\]

\[
p_{21} = m_{21}n_{11} + m_{22}n_{21}
\]
Matrix-Matrix Multiplication

- row by column

\[
\begin{bmatrix}
 m_{11} & m_{12} \\
 m_{21} & m_{22}
\end{bmatrix}
\begin{bmatrix}
 n_{11} & n_{12} \\
 n_{21} & n_{22}
\end{bmatrix}
= \begin{bmatrix}
 p_{11} & p_{12} \\
 p_{21} & p_{22}
\end{bmatrix}
\]

\[
p_{11} = m_{11} n_{11} + m_{12} n_{21}
\]

\[
p_{21} = m_{21} n_{11} + m_{22} n_{21}
\]

\[
p_{12} = m_{11} n_{12} + m_{12} n_{22}
\]
Matrix-Matrix Multiplication

- row by column

\[
\begin{bmatrix}
 m_{11} & m_{12} \\
 m_{21} & m_{22}
\end{bmatrix}
\begin{bmatrix}
 n_{11} & n_{12} \\
 n_{21} & n_{22}
\end{bmatrix}
= \begin{bmatrix}
 p_{11} & p_{12} \\
 p_{21} & p_{22}
\end{bmatrix}
\]

\[
\begin{align*}
p_{11} &= m_{11}n_{11} + m_{12}n_{21} \\
p_{21} &= m_{21}n_{11} + m_{22}n_{21} \\
p_{12} &= m_{11}n_{12} + m_{12}n_{22} \\
p_{22} &= m_{21}n_{12} + m_{22}n_{22}
\end{align*}
\]
Matrix-Matrix Multiplication

- row by column

\[
\begin{bmatrix}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{bmatrix}
\begin{bmatrix}
n_{11} & n_{12} \\
n_{21} & n_{22}
\end{bmatrix}
=
\begin{bmatrix}
p_{11} & p_{12} \\
p_{21} & p_{22}
\end{bmatrix}
\]

\[
p_{11} = m_{11}n_{11} + m_{12}n_{21} \\
p_{21} = m_{21}n_{11} + m_{22}n_{21} \\
p_{12} = m_{11}n_{12} + m_{12}n_{22} \\
p_{22} = m_{21}n_{12} + m_{22}n_{22}
\]

- noncommutative: \(AB \neq BA \)
Matrix-Vector Multiplication

• points as column vectors: postmultiply

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
h'
\end{bmatrix}
= \begin{bmatrix}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34} \\
m_{41} & m_{42} & m_{43} & m_{44}
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
h
\end{bmatrix}
\]

\[p' = Mp\]

• points as row vectors: premultiply

\[
\begin{bmatrix}
x' & y' & z' & h'
\end{bmatrix}
= \begin{bmatrix}
x & y & z & h
\end{bmatrix}
\begin{bmatrix}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34} \\
m_{41} & m_{42} & m_{43} & m_{44}
\end{bmatrix}
\]

\[p'^T = p^T M^T\]
Matrices

- **transpose**

\[
\begin{bmatrix}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34} \\
m_{41} & m_{42} & m_{43} & m_{44}
\end{bmatrix}^T = \begin{bmatrix}
m_{11} & m_{21} & m_{31} & m_{41} \\
m_{12} & m_{22} & m_{32} & m_{42} \\
m_{13} & m_{23} & m_{33} & m_{43} \\
m_{14} & m_{24} & m_{34} & m_{44}
\end{bmatrix}
\]

- **identity**

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

- **inverse**

\[AA^{-1} = I\]

- not all matrices are invertible
Matrices and Linear Systems

• linear system of n equations, n unknowns
 \[3x + 7y + 2z = 4\]
 \[2x - 4y - 3z = -1\]
 \[5x + 2y + z = 1\]

• matrix form \(Ax=b\)

\[
\begin{bmatrix}
3 & 7 & 2 \\
2 & -4 & -3 \\
5 & 2 & 1 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
\end{bmatrix} =
\begin{bmatrix}
4 \\
-1 \\
1 \\
\end{bmatrix}
\]
Rendering Pipeline
Rendering

• goal
 • transform computer models into images
 • may or may not be photo-realistic

• interactive rendering
 • fast, but limited quality
 • roughly follows a fixed patterns of operations
 • rendering pipeline

• offline rendering
 • ray tracing
 • global illumination
Rendering

- tasks that need to be performed (in no particular order):
 - project all 3D geometry onto the image plane
 - geometric transformations
 - determine which primitives or parts of primitives are visible
 - hidden surface removal
 - determine which pixels a geometric primitive covers
 - scan conversion
 - compute the color of every visible surface point
 - lighting, shading, texture mapping
Rendering Pipeline

• what is the pipeline?
 • abstract model for sequence of operations to transform geometric model into digital image
 • abstraction of the way graphics hardware works
 • underlying model for application programming interfaces (APIs) that allow programming of graphics hardware
 • OpenGL
 • Direct 3D
 • actual implementation details of rendering pipeline will vary
Rendering Pipeline

Geometry Database → Model/View Transform. → Lighting → Perspective Transform. → Clipping

Scan Conversion → Texturing → Depth Test → Blending → Frame-buffer
Geometry Database

- geometry database
- application-specific data structure for holding geometric information
- depends on specific needs of application
 - triangle soup, points, mesh with connectivity information, curved surface
Model/View Transformation

- modeling transformation
 - map all geometric objects from local coordinate system into world coordinates
- viewing transformation
 - map all geometry from world coordinates into camera coordinates
Lighting

- lighting
 - compute brightness based on property of material and light position(s)
 - computation is performed *per-vertex*
Perspective Transformation

- perspective transformation
- projecting the geometry onto the image plane
- projective transformations and model/view transformations can all be expressed with 4x4 matrix operations
Clipping

- clipping
- removal of parts of the geometry that fall outside the visible screen or window region
- may require *re-tessellation* of geometry
Scan Conversion

- scan conversion
 - turn 2D drawing primitives (lines, polygons etc.) into individual pixels (discretizing/sampling)
 - interpolate color across primitive
 - generate discrete fragments
Texture Mapping

- texture mapping
- “gluing images onto geometry”
- color of every fragment is altered by looking up a new color value from an image
• depth test
 • remove parts of geometry hidden behind other geometric objects
 • perform on every individual fragment
 • other approaches (later)
Blending

- blending
- final image: write fragments to pixels
- draw from farthest to nearest
- no blending – replace previous color
- blending: combine new & old values with arithmetic operations
Framebuffer

- framebuffer
- video memory on graphics board that holds image
- double-buffering: two separate buffers
 - draw into one while displaying other, then swap to avoid flicker

```
<table>
<thead>
<tr>
<th>255</th>
<th>255</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>255</td>
<td>255</td>
<td>255</td>
<td>255</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>255</td>
<td>155</td>
<td>155</td>
<td>255</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>155</td>
<td>0</td>
<td>0</td>
<td>155</td>
<td>155</td>
<td>155</td>
</tr>
<tr>
<td>0</td>
<td>255</td>
<td>255</td>
<td>255</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>255</td>
<td>155</td>
<td>155</td>
<td>0</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>155</td>
<td>0</td>
<td>0</td>
<td>155</td>
<td>155</td>
<td>255</td>
</tr>
<tr>
<td>0</td>
<td>255</td>
<td>255</td>
<td>255</td>
<td>255</td>
<td>255</td>
</tr>
</tbody>
</table>
```
Pipeline Advantages

• modularity: logical separation of different components
• easy to parallelize
 • earlier stages can already work on new data while later stages still work with previous data
• similar to pipelining in modern CPUs
• but much more aggressive parallelization possible (special purpose hardware!)
• important for hardware implementations
• only local knowledge of the scene is necessary
Pipeline Disadvantages

• limited flexibility
• some algorithms would require different ordering of pipeline stages
 • hard to achieve while still preserving compatibility
• only local knowledge of scene is available
 • shadows, global illumination difficult
OpenGL (briefly)
OpenGL

• API to graphics hardware
 • based on IRIS_GL by SGI
• designed to exploit hardware optimized for display and manipulation of 3D graphics
• implemented on many different platforms
• low level, powerful flexible
• pipeline processing
 • set state as needed
Graphics State

• set the state once, remains until overwritten
 • glColor3f(1.0, 1.0, 0.0) \rightarrow set color to yellow
 • glSetClearColor(0.0, 0.0, 0.2) \rightarrow dark blue bg
 • glEnable(LIGHT0) \rightarrow turn on light
 • glEnable(GL_DEPTH_TEST) \rightarrow hidden surf.
Geometry Pipeline

• tell it how to interpret geometry
 • `glBegin(<mode of geometric primitives>)`
 • `mode = GL_TRIANGLES, GL_POLYGON, etc.`

• feed it vertices
 • `glVertex3f(-1.0, 0.0, -1.0)`
 • `glVertex3f(1.0, 0.0, -1.0)`
 • `glVertex3f(0.0, 1.0, -1.0)`

• tell it you’re done
 • `glEnd()`
Open GL: Geometric Primitives

glPointSize(float size);
glLineWidth(float width);
glColor3f(float r, float g, float b);

....
void display()
{
 glClearColor(0.0, 0.0, 0.0, 0.0);
 glClear(GL_COLOR_BUFFER_BIT);
 glColor3f(0.0, 1.0, 0.0);
 glBegin(GL_POLYGON);
 glVertex3f(0.25, 0.25, -0.5);
 glVertex3f(0.75, 0.25, -0.5);
 glVertex3f(0.75, 0.75, -0.5);
 glVertex3f(0.25, 0.75, -0.5);
 glEnd();
 glFlush();
}

• more OpenGL as course continues