Intro
(Guest Lecturer: Michiel van de Panne)

Week 1, Mon Jan 7

Outline

• Defining Computer Graphics
• Course Structure
• Course Content Overview
What is Computer Graphics?

- create or manipulate images with computer
 - this course: algorithms for image generation
What is CG used for?

- movies
 - animation
 - special effects
What is CG used for?

- computer games
What is CG used for?

- images
 - design
 - advertising
 - art
What is CG used for?

- virtual reality / immersive displays
What is CG used for?

- graphical user interfaces
 - modeling systems
 - applications
- simulation & visualization
Real or CG?

http://www.alias.com/eng/etc/fakeorfoto/quiz.html
Real or CG?
Real or CG?
Real or CG?
Expectations

- hard course!
 - heavy programming and heavy math
- fun course!
 - graphics programming addictive, create great demos
- programming prereq
 - CPSC 221 (Program Design and Data Structures)
 - course language is C++/C
- math prereq
 - MATH 200 (Calculus III)
 - MATH 221/223 (Matrix Algebra/Linear Algebra)
Course Structure

- 39% programming projects
 - 8% project 1 (building beasties with cubes and math)
 - 8% project 2 (flying)
 - 8% project 3 (ray tracer)
 - 15% project 4 (create your own graphics game)
- 25% final
- 20% midterm (week 8 Fri 3/7)
- 16% written assignments
 - 4% each HW 1/2/3/4
- programming projects and homeworks synchronized
Programming Projects

• structure
 • C++, Linux
 • OK to cross-platform develop on Windows, Mac
 • OpenGL graphics library
 • GLUT for platform-independent windows/UI
 • face to face grading in lab

• Hall of Fame
 • first project: building beasties
 • previous years: spiders, armadillos, giraffes, frogs, elephants, birds, poodles, dinos, cats…
 • last project: create your own graphics game
Late Work

• 3 grace days
 • for unforeseen circumstances
 • strong recommendation: don’t use early in term
 • handing in late uses up automatically unless you tell us
• otherwise: 50% if one day (24 hrs) late, 0% afterwards
• only exception: severe illness or crisis
 • as per UBC rules
 • must let me know ASAP (in person or email)
 • at latest, 7 days after return to school
 • must also turn in form with documentation (doctor note)
Regrading

- to request assignment or exam regrade
 - give me paper to be regraded, and also in writing
 - what problem you're disputing
 - detailed explanation why you think grader was wrong
 - I will not accept until next class after solutions handed out
- I may regrade entire assignment
 - thus even if I agree with your original request, your score may nevertheless end up higher or lower
Course Information

- course web page is main resource
 - updated often, reload frequently
- newsgroup is ubc.courses.cpsc.414
 - note old course number still used
 - readable on or off campus
- (no WebCT)
Teaching Staff

- instructor: Tamara Munzner
 - tmm@cs.ubc.ca
 - office hrs in ICICS/CS 011 (our lab)
 - Wed/Fri 2-3
 - or by appointment in X661
- TAs: Stephen Ingram, Cody Robson, Michael Welsman-Dinelle
 - sfingram@cs.ubc.ca
 - cjrobson@cs.ubc.ca
 - mwelsman@cs.ubc.ca
- use newsgroup, not email, for all questions that other students might care about
Labs

- attend one lab per week
 - Mon 12-1, Thu 10-11 (Stephen Ingram)
 - Tue 1-2, Fri 12-1 (Cody Robson)
- mix of activities
 - example problems in spirit of written assignments and exams
 - help with programming projects
 - tutorials
- no deliverables (unlike intro classes)
- strongly recommend that you attend
Required Reading

- Fundamentals of Computer Graphics
 - Peter Shirley, AK Peters, 2nd edition

- OpenGL Programming Guide, v 2.1
 - OpenGL Architecture Review Board
 - v 1.1 available for free online

- readings posted on schedule page
Learning OpenGL

- this is a graphics course using OpenGL
 - not a course *on* OpenGL
- upper-level class: learning APIs mostly on your own
 - only minimal lecture coverage
 - basics, some of the tricky bits
- OpenGL Red Book
- many tutorial sites on the web
 - nehe.gamedev.net
Plagiarism and Cheating

• don’t cheat, I will prosecute
 • insult to your fellow students and to me
• programming and assignment writeups must be individual work
 • can discuss ideas, browse Web
 • cannot just copy code or answers
 • cannot do team coding
 • exception: final project can be team of two or three
• you must be able to explain algorithms during face-to-face demo
 • or no credit for that part of assignment
 • and possibly prosecution
Citation

- cite all sources of information
 - what to cite
 - study group members, books, web sites
 - where to cite it
 - README for programming projects
 - end of writeup for written assignments
Course Content Overview
This Course

- we cover
 - basic **algorithms** for
 - rendering – displaying models
 - (modeling – generating models)
 - (animation – generating motion)
 - programming in OpenGL, C++

- we do not cover
 - art/design issues
 - commercial software packages
Other Graphics Courses

- CPSC 424: Geometric Modeling
 - offered next year
- CPSC 426: Computer Animation
 - offered this term
- CPSC 514: Image-based Modeling and Rendering
- CPSC 526: Computer Animation
- CPSC 533A: Digital Geometry
- CPSC 533B: Animation Physics
- CPSC 533C: Information Visualization
- CPSC 530P: Sensorimotor Computation
Rendering

- creating images from models
 - geometric objects
 - lines, polygons, curves, curved surfaces
 - camera
 - pinhole camera, lens systems, orthogonal
 - shading
 - light interacting with material
- illustration of rendering capabilities
 - Shutterbug series by Williams and Siegel using Pixar's Renderman
 - www.siggraph.org/education/materials/HyperGraph/shutbug.htm
Modelling Transformation: Object Placement
Viewing Transformation: Camera Placement
Perspective Projection
Depth Cueing
Depth Clipping
Colored Wireframes
Hidden Line Removal
Hidden Surface Removal
Per-Polygon Shading
Gouraud Shading
Specular Reflection
Phong Shading
Curved Surfaces
Complex Lighting and Shading
Texture Mapping
Displacement Mapping
Reflection Mapping
Modelling

- generating models
 - lines, curves, polygons, smooth surfaces
 - digital geometry
Animation

- generating motion
 - interpolating between frames, states

http://www.cs.ubc.ca/~van/papers/doodle.html
Readings

- today
 - FCG Chap 1

- Wed
 - FCG Chap 2
 - except 2.5.1, 2.5.3, 2.7.1, 2.7.3, 2.8, 2.9, 2.11.
 - FCG Chap 5.1-5.2.5
 - except 5.2.3, 5.2.4