Outline
- Defining Computer Graphics
- Course Structure
- Course Content Overview

What is Computer Graphics?
- create or manipulate images with computer
 - this course: algorithms for image generation

What is CG used for?
- movies
 - animation
 - special effects

What is CG used for?
- computer games

What is CG used for?
- images
 - design
 - advertising
 - art

What is CG used for?
- virtual reality / immersive displays

What is CG used for?
- computer games

What is CG used for?
- images
 - design
 - advertising
 - art

What is CG used for?
- virtual reality / immersive displays

Real or CG?
http://www.alias.com/eng/etc/fakeorfoto/quiz.html

Expectations
- hard course!
 - heavy programming and heavy math
- fun course!
 - graphics programming addictive, create great demos
 - programming prereq
 - CPSC 221 (Program Design and Data Structures)
 - course language is C++/C
- math prereq
 - MATH 200 (Calculus III)
 - MATH 221/223 (Matrix Algebra/Linear Algebra)

Course Structure
- 39% programming projects
 - 8% project 1 (building beasties with cubes and math)
 - 8% project 2 (flying)
 - 8% project 3 (ray tracer)
 - 15% project 4 (create your own graphics game)
 - 25% final
 - 20% midterm (week 8 Fri 3/7)
 - 16% written assignments
 - 4% each HW 1/2/3/4
 - programming projects and homeworks synchronized

Programming Projects
- structure
 - C++, Linux
 - OpenGL graphics library
 - GLUT for platform-independent windows/UI
 - face to face grading in lab
- Hall of Fame
 - first project: building beasties
 - previous years: spiders, armadillos, giraffes, frogs, elephants, birds, poodles, dinos, cats,…
 - last project: create your own graphics game

Late Work
- 3 grace days
 - for unforeseen circumstances
 - strong recommendation: don’t use early in term
 - handing in late uses up automatically unless you tell us
 - otherwise: 50% if one day (24 hrs) late, 0% afterwards
- only exception: severe illness or crisis
 - as per UBC rules
 - must let me know ASAP (in person or email)
 - at latest, 7 days after return to school
 - must also turn in form with documentation (doctor note)

Real or CG?

Real or CG?

Real or CG?

Real or CG?

Real or CG?
Regrading
- to request assignment or exam regrade
 - give me paper to be regraded, and also in writing
 - detailed explanation why you think grader was wrong
 - I will not accept until next class after solutions handed out
 - I may regrade entire assignment
 - thus even if I agree with your original request, your score may nevertheless end up higher or lower

Course Information
- course web page is main resource
 - updated often, reload frequently
 - newsgroup is ubc.courses.cpsc.414
 - note old course number still used
 - readable on or off campus
 - (no WebCT)

Teaching Staff
- instructor: Tamara Munzner
 - tmm@cs.ubc.ca
 - office hrs in ICICS/CS 011 (our lab)
 - Wed/Fri 2-3
 - or by appointment in X661
- TAs: Stephen Ingram, Cody Robson, Michael Weltman-Dinelle
 - sfingram@cs.ubc.ca
 - cjrobson@cs.ubc.ca
 - mweltman@cs.ubc.ca
- use newsgroup, not email, for all questions that other students might care about

Required Reading
- Fundamentals of Computer Graphics
 - Peter Shirley, AK Peters, 2nd edition
- OpenGL Programming Guide, v 2.1
 - Open GL Architecture Review Board
 - v 1.1 available for free online
- readings posted on schedule page

Learning OpenGL
- this is a graphics course using OpenGL
 - not a course "on" OpenGL
- upper-level class: learning APIs mostly on your own
 - only minimal lecture coverage
 - basics, some of the tricky bits
 - OpenGL Red Book
 - many tutorial sites on the web
 - nehe.gamedev.net
- we cover
 - basic algorithms for
 - rendering – displaying models
 - (modeling – generating models)
 - (animation – generating motion)
 - programming in OpenGL, C++
 - we do not cover
 - art/design issues
 - commercial software packages

Other Graphics Courses
- CPSC 424: Geometric Modeling
 - offered next year
- CPSC 426: Computer Animation
 - offered this term
- CPSC 514: Image-based Modeling and Rendering
- CPSC 526: Computer Animation
- CPSC 533A: Digital Geometry
- CPSC 533B: Animation Physics
- CPSC 533C: Information Visualization
- CPSC 530P: Sensorimotor Computation

Rendering
- creating images from models
 - geometric objects
 - lines, polygons, curves, curved surfaces
 - camera
 - pinhole camera, lens systems, orthogonal
 - shading
 - light interacting with material
 - illustration of rendering capabilities
 - Shutterbug series by Williams and Siegel using Pixar's Renderman
 - www.siggraph.org/education/materials/HyperGraph/shutbug.htm

Modelling Transformation: Object Placement

Viewing Transformation: Camera Placement

Perspective Projection

Depth Cueing
Depth Clipping

Colored Wireframes

Hidden Line Removal

Hidden Surface Removal

Per-Polygon Shading

Gouraud Shading

Specular Reflection

Phong Shading

Curved Surfaces

Complex Lighting and Shading

Texture Mapping

Displacement Mapping

Modelling
- generating models
 - lines, curves, polygons, smooth surfaces
 - digital geometry

Animation
- generating motion
 - interpolating between frames, states

Readings
- today
 - FCG Chap 1
- Wed
 - FCG Chap 2
 - except 2.5.1, 2.5.3, 2.7.1, 2.7.3, 2.8, 2.9, 2.11.
 - FCG Chap 5.1-5.2.5
 - except 5.2.3, 5.2.4

http://www.cs.ubc.ca/~van/papers/doodle.html