Modeling: Acquisition

Marching Cubes

(Lorensen and Cline)
Types of Sensors

Imaging (2D/3D)

Laser Imaging (2D/3D)
Sensing Technologies - Imaging

- Capture multiple 2D images
- Use image processing tools to create initial geometry data

Requirements
- Many cameras
- Specific locations
3D Imaging

- Wave based sensors
 - Ultrasound,
 - Magnetic Resonance Imaging (MRI)
 - X-Ray
 - Computed Tomography (CT)

- Outputs
 - volumetric data (voxels)
Range Scanners

- Laser/Optical range scanner provides 2D array of depth data
- Some capture colour (texture)
- Multiple views for complete object scan:
 - Rotate object
 - Rotate sensor
- Output - point set
Voxels

- Define iso-surfaces (between data values)
- Triangulate iso-surface
 - Marching Cubes
Marching Cubes: Overview

- Marching cubes: method for approximating surface defined by isovalue α, given by grid data

- **Input:**
 - Grid data (set of 2D images)
 - Threshold value (isovalue) α

- **Output:**
 - Triangulated surface that matches isovalue surface of α
Voxels

- Voxel – cube with values at eight corners
 - Each value is above or below isovalue α
 - Method processes one voxel at a time
- $2^8=256$ possible configurations (per voxel)
 - reduced to 15 (symmetry and rotations)
- Each voxel is either:
 - Entirely inside isosurface
 - Entirely outside isosurface
 - Intersected by isosurface
Algorithm

- First pass
 - Identify voxels which intersect isovalue

- Second pass
 - Examine those voxels
 - For each voxel produce set of triangles
 - approximate surface inside voxel
Figure 2. Configurations.
Configurations

- For each configuration add 1-4 triangles to isosurface

- Isosurface vertices computed by:
 - Interpolation along edges (according to pixel values)
 - better shading, smoother surfaces
 - Default – mid-edges
Example
Marching Cubes method can produce erroneous results

- E.g. isovalue surfaces with "holes"

Example:

- voxel with configuration 6 that shares face with complement of configuration 3:
Solution

- Use different triangulations
- For each problematic configuration have more than one triangulation
- Distinguish different cases by choosing pairwise connections of four vertices on common face
Ambiguous Face

- **Ambiguous Face**: face containing two diagonally opposite marked grid points and two unmarked ones

- Source of the problems in MC method
Solution by Consistency

Problem:
- Connection of isosurface points on common face done one way on one face & another way on the other

Need consistency → use different triangulations

If choices are consistent get topologically correct surface
Asymptotic Decider

- **Asymptotic Decider**: technique for choosing which vertices to connect on ambiguous face

- Use bilinear interpolation over ambiguous face
Bilinear Interpolation

- Bilinear interpolation over face - natural extension of linear interpolation along an edge
- Consider face as unit square

\[
B(s, t) = (1 - s) s \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix} \begin{pmatrix} 1 - t \\ t \end{pmatrix}
\]

\[
\{(s, t): 0 \leq s \leq 1, \quad 0 \leq t \leq 1\}
\]

\(B_{ij}\) - values of four face corners
Bilinear Interpolation (cont.)

Figure 5. Bilinear interpolation.
Asymptotic Decider Test (cont).

\[B(S_\alpha, T_\alpha) = \frac{B_{00} B_{11} + B_{10} B_{01}}{B_{00} + B_{11} - B_{01} - B_{10}}. \]

- If \(\alpha > B(S_\alpha, T_\alpha) \)
 - connect \((S_1,1)-(1,T_1)\) & \((S_0,0)-(0,T_0)\)
- else
 - connect \((S_1,1)-(0,T_0)\) and \((S_0,0)-(1,T_1)\)
Various Cases

- Configurations 0, 1, 2, 4, 5, 8, 9, 11 and 14 have no ambiguous faces \Rightarrow no modifications

- Other configurations need modifications according to number of ambiguous faces
Configuration 3+6

- Exactly one ambiguous face

- Two possible ways to connect vertices
 - two resulting triangulations

- Several different (valid) triangulations
Configuration 12

- Two ambiguous faces $\implies 2^2 = 4$ boundary polygons
Configuration 10

- As in configuration 12 - two ambiguous faces

- When both faces are separated (10A) or not separated (10C) there are two components for the isovalue surface
Configuration 7

- Three ambiguous faces $\Rightarrow 2^3 = 8$ possibilities
- Some are equivalent \Rightarrow only 4 triangulations
Configuration 13

Figure 16.
Remarks

- Modifications add considerable complexity to MC

- No significant impact on running time or total number of triangles produced

- New configurations occur in real data sets
 - But not very often
Table 1. Frequency of configurations

<table>
<thead>
<tr>
<th>Config</th>
<th>Example 1</th>
<th>Example 2</th>
<th>Example 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>263.519</td>
<td>285.074</td>
<td>110.993</td>
</tr>
<tr>
<td>1</td>
<td>7.705</td>
<td>1.912</td>
<td>1.673</td>
</tr>
<tr>
<td>2</td>
<td>8.710</td>
<td>2.065</td>
<td>2.421</td>
</tr>
<tr>
<td>3A</td>
<td>60</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>3B</td>
<td>46</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>28</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>5.611</td>
<td>1.228</td>
<td>1.143</td>
</tr>
<tr>
<td>6A</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6B</td>
<td>47</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7A</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7B.D</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7C</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>4.637</td>
<td>906</td>
<td>1.146</td>
</tr>
<tr>
<td>9</td>
<td>1.003</td>
<td>304</td>
<td>261</td>
</tr>
<tr>
<td>10A.C</td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10B.D</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>36</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12A.C</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12B.D</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>69</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>