Mesh Simplification

Simplifier

12,000

2,000

300
Motivation

- Reduce information content
- Accelerate rendering
- Multi-resolution models

Mesh Simplification

error

size
Level of Detail (LOD)

- Refined mesh for close objects
- Simplified mesh for far
Performance Requirements

- Real-time
 - Generate model at given level(s) of detail
 - Focus on speed
 - Requires preprocessing
 - Time/space/quality tradeoff
Methodology

- Sequence of local operations
 - Involve near neighbors - only small patch affected in each operation
 - Each operation introduces error
 - Find and apply operation which introduces the least error
Simplification Operations (1)

- Decimation
 - Vertex removal:
 - \(v \leftarrow v-1 \)
 - \(f \leftarrow f-2 \)

- Remaining vertices - subset of original vertex set
Simplification Operations (2)

- Decimation
 - Edge collapse
 - \(v \leftarrow v - 1 \)
 - \(f \leftarrow f - 2 \)

- Vertices may move
Simplification Operations (3)

- Contraction
 - Pair contraction

- Vertices may move
Error Control

- Local error: Compare new patch with previous iteration
 - Fast
 - Accumulates error
 - Memory-less

- Global error: Compare new patch with original mesh
 - Slow
 - Better quality control
 - Can be used as termination condition
 - Must remember the original mesh throughout the algorithm
Local vs. Global Error

2000 faces 488 faces 488 faces

Mesh Simplification
Simplification Error Metrics

- Measures
 - Distance to plane
 - Curvature
- Usually approximated
 - Average plane
 - Discrete curvature

$$\Sigma \alpha / 2\pi$$
The Basic Algorithm

- Repeat
 - Select the element with minimal error
 - Perform simplification operation (remove/contract)
 - Update error (local/global)

- Until mesh size / quality is achieved
Implementation Details

- Vertices/Edges/Faces data structure
 - Easy access from each element to neighboring elements
- Use priority queue (e.g. heap)
 - Fast access to element with minimal error
 - Fast update
Vertex Removal Algorithm

- Simplification operation: Vertex removal
- Error metric: Distance to average plane
- May preserve mesh features (creases)
Algorithm Outline

- Characterize local topology/geometry
- Classify vertices as removable or not
- **Repeat**
 - Remove vertex
 - Triangulate resulting hole
 - Update error of affected vertices
- **Until** reduction goal is met
Triangulating the Hole

- Vertex removal produces non-planar loop
 - Split loop recursively
 - Split plane orthogonal to the average plane
- Control aspect ratio
- Triangulation may fail
 - Vertex is not removed
Example
Pros and Cons

Pros:

- Efficient
- Simple to implement and use
 - Few input parameters to control quality
- Reasonable approximation
- Works on very large meshes
- Preserves topology
- Vertices are a subset of the original mesh

Cons:

- Error is not bounded
 - Local error evaluation causes error to accumulate