Mesh Simplification

Motivation
- Reduce information content
- Accelerate rendering
- Multi-resolution models

Level of Detail (LOD)
- Refined mesh for close objects
- Simplified mesh for far

Implementation Details
- Use priority queue (e.g. heap)
- Fast access to element with minimal error
- Fast update

Methodology
- Sequence of local operations
 - Involve near neighbors - only small patch affected in each operation
 - Each operation introduces error
 - Find and apply operation which introduces the least error

Simplification Operations (1)
- Decimation
 - Vertex removal:
 - $v \leftarrow v-1$
 - $f \leftarrow f-2$

Simplification Operations (2)
- Decimation
 - Edge collapse
 - $v \leftarrow v-1$
 - $f \leftarrow f-2$

Simplification Operations (3)
- Contraction
 - Pair contraction
 - Vertices may move

Error Control
- Local error: Compare new patch with previous iteration
 - Fast
 - Accumulates error
 - Memory-less
- Global error: Compare new patch with original mesh
 - Slow
 - Better quality control
 - Can be used as termination condition
 - Must remember the original mesh throughout the algorithm

Local vs. Global Error
- 2000 faces
- 488 faces
- 488 faces

Simplification Error Metrics
- Measures
 - Distance to plane
 - Curvature
 - Usually approximated
 - Average plane
 - Discrete curvature

The Basic Algorithm
- Repeat
 - Select the element with minimal error
 - Perform simplification operation
 - Remove vertex
 - Update error of affected vertices
 - Until reduction goal is met

Vertex Removal Algorithm
- Simplification operation: Vertex removal
- Error metric: Distance to average plane
- May preserve mesh features (creases)

Triangulating the Hole
- Vertex removal produces non-planar loop
- Split loop recursively
- Split plane orthogonal to the average plane
- Control aspect ratio
- Triangulation may fail
Pros and Cons

Pros:
- Efficient
- Simple to implement and use
- Few input parameters to control quality
- Reasonable approximation
- Works on very large meshes
- Preserves topology
- Vertices are a subset of the original mesh

Cons:
- Error is not bounded
- Local error evaluation causes error to accumulate