Reading for Today

- FCG Chap 3 Raster Algorithms
 - (except 3.2-3.4, 3.8)
- FCG Section 2.11 Triangles
Reading for Next Three Lectures

• FCG Chap 9 Surface Shading
• RB Chap Lighting
Review: HSV Color Space

- **hue**: dominant wavelength, “color”
- **saturation**: how far from grey
- **value/brightness**: how far from black/white
- cannot convert to RGB with matrix alone
Review: YIQ Color Space

- color model used for color TV
 - Y is luminance (same as CIE)
 - I & Q are color (not same I as HSI!)
- using Y backwards compatible for B/W TVs
- conversion from RGB is linear

\[
\begin{bmatrix}
Y \\
I \\
Q
\end{bmatrix} =
\begin{bmatrix}
0.30 & 0.59 & 0.11 \\
0.60 & -0.28 & -0.32 \\
0.21 & -0.52 & 0.31
\end{bmatrix}
\begin{bmatrix}
R \\
G \\
B
\end{bmatrix}
\]

- green is much lighter than red, and red lighter than blue
Review: Luminance vs. Intensity

- **luminance**
 - Y of YIQ
 - $0.299R + 0.587G + 0.114B$
- **intensity/brightness**
 - I/V/B of HSI/HSV/HSB
 - $0.333R + 0.333G + 0.333B$

Review: Color Constancy

- automatic “white balance” from change in illumination
- vast amount of processing behind the scenes!
- colorimetry vs. perception
Rasterization
Scan Conversion - Rasterization

- convert continuous rendering primitives into discrete fragments/pixels
 - lines
 - midpoint/Bresenham
 - triangles
 - flood fill
 - scanline
 - implicit formulation
 - interpolation
Scan Conversion

• given vertices in DCS, fill in the pixels
• display coordinates required to provide scale for discretization
 • [demo]
Basic Line Drawing

\[y = mx + b \]
\[y = \frac{(y_1 - y_0)}{(x_1 - x_0)} (x - x_0) + y_0 \]

- **goals**
 - integer coordinates
 - thinnest line with no gaps
 - assume
 - \(x_0 < x_1 \), slope \(0 < \frac{dy}{dx} < 1 \)
 - one octant, other cases symmetric
 - how can we do this more quickly?

```
Line (x_0, y_0, x_1, y_1)
begin
float dx, dy, x, y, slope;
dx \leftarrow x_1 - x_0;
dy \leftarrow y_1 - y_0;
slope \leftarrow \frac{dy}{dx};
y \leftarrow y_0
for x from x_0 to x_1 do
begin
  PlotPixel ( x, Round (y) );
y \leftarrow y + slope;
end;
end;
```
Midpoint Algorithm

• we're moving horizontally along x direction
 • only two choices: draw at current y value, or move up vertically to y+1?
 • check if midpoint between two possible pixel centers above or below line

• candidates
 • top pixel: (x+1,y+1)
 • bottom pixel: (x+1, y)
• midpoint: (x+1, y+.5)
• check if midpoint above or below line
 • below: pick top pixel
 • above: pick bottom pixel
• key idea behind Bresenham
 • [demo]
Making It Fast: Reuse Computation

- midpoint: if \(f(x+1, y+.5) < 0 \) then \(y = y+1 \)
- on previous step evaluated \(f(x-1, y-.5) \) or \(f(x-1, y+.05) \)
- \(f(x+1, y) = f(x,y) + (y_0-y_1) \)
- \(f(x+1, y+1) = f(x,y) + (y_0-y_1) + (x_1-x_0) \)

\[
y=y_0 \\
d = f(x0+1, y0+.5) \\
for (x=x0; x <= x1; x++) \{
 \text{draw}(x,y); \\
 \text{if (d<0) then} \{ \\
 y = y + 1; \\
 d = d + (x1 - x0) + (y0 - y1) \\
 \} \text{else} \{ \\
 d = d + (y0 - y1) \\
 \}
\}
Making It Fast: Integer Only

- avoid dealing with non-integer values by doubling both sides

\[
y = y_0 \\
d = f(x_0+1, y_0+.5) \\
\text{for } (x=x_0; x <= x_1; x++) \\
\quad \{ \\
\quad \quad \text{draw}(x,y); \\
\quad \quad \text{if } (d<0) \text{ then } \{ \\
\quad \quad \quad y = y + 1; \\
\quad \quad \quad d = d + (x_1 - x_0) + (y_0 - y_1) \\
\quad \quad \} \text{ else } \{ \\
\quad \quad \quad d = d + (y_0 - y_1) \\
\quad \quad \} \\
\}
\]

\[
y = y_0 \\
2d = 2 \times (y_0 - y_1)(x_0 + 1) + (x_1 - x_0)(2y_0 + 1) + 2x_0y_1 - 2x_1y_0 \\
\text{for } (x=x_0; x <= x_1; x++) \\
\quad \{ \\
\quad \quad \text{draw}(x,y); \\
\quad \quad \text{if } (d<0) \text{ then } \{ \\
\quad \quad \quad y = y + 1; \\
\quad \quad \quad d = d + 2(x_1 - x_0) + 2(y_0 - y_1) \\
\quad \quad \} \text{ else } \{ \\
\quad \quad \quad d = d + 2(y_0 - y_1) \\
\quad \quad \} \\
\}
Rasterizing Polygons/Triangles

• basic surface representation in rendering

• why?
 • lowest common denominator
 • can approximate any surface with arbitrary accuracy
 • all polygons can be broken up into triangles

• guaranteed to be:
 • planar
 • triangles - convex

• simple to render
 • can implement in hardware
Triangulating Polygons

• simple convex polygons
 • trivial to break into triangles
 • pick one vertex, draw lines to all others not immediately adjacent
 • OpenGL supports automatically
 • glBegin(GL_POLYGON) ... glEnd()

• concave or non-simple polygons
 • more effort to break into triangles
 • simple approach may not work
 • OpenGL can support at extra cost
 • gluNewTess(), gluTessCallback(), ...
Problem

• input: closed 2D polygon
• problem: fill its interior with specified color on graphics display
• assumptions
 • simple - no self intersections
 • simply connected
• solutions
 • flood fill
 • edge walking
Flood Fill

- simple algorithm
 - draw edges of polygon
 - use flood-fill to draw interior
Flood Fill

• start with seed point
• recursively set all neighbors until boundary is hit
Flood Fill

• draw edges
• run:

\[
\text{FloodFill}(\text{Polygon } P, \text{ int } x, \text{ int } y, \text{ Color } C) \\
\text{if not (} \text{OnBoundary}(x, y, P) \text{ or } \text{Colored}(x, y, C) \text{)} \\
\text{begin} \\
\text{PlotPixel}(x, y, C); \\
\text{FloodFill}(P, x + 1, y, C); \\
\text{FloodFill}(P, x, y + 1, C); \\
\text{FloodFill}(P, x, y - 1, C); \\
\text{FloodFill}(P, x - 1, y, C); \\
\text{end ;}
\]

• drawbacks?
Flood Fill Drawbacks

- pixels visited up to 4 times to check if already set
- need per-pixel flag indicating if set already
 - must clear for every polygon!
Scanline Algorithms

• **scanline**: a line of pixels in an image
 • set pixels inside polygon boundary along horizontal lines one pixel apart vertically
General Polygon Rasterization

• how do we know whether given pixel on scanline is inside or outside polygon?
General Polygon Rasterization

- idea: use a parity test

```c
for each scanline
    edgeCnt = 0;
    for each pixel on scanline (l to r)
        if (oldpixel->newpixel crosses edge)
            edgeCnt++;
        // draw the pixel if edgeCnt odd
        if (edgeCnt % 2)
            setPixel(pixel);
```
Making It Fast: Bounding Box

- smaller set of candidate pixels
 - loop over xmin, xmax and ymin, ymax instead of all x, all y
Triangle Rasterization Issues

- moving slivers
- shared edge ordering
Triangle Rasterization Issues

- exactly which pixels should be lit?
 - pixels with centers inside triangle edges
- what about pixels exactly on edge?
 - draw them: order of triangles matters (it shouldn’t)
 - don’t draw them: gaps possible between triangles
- need a consistent (if arbitrary) rule
 - example: draw pixels on left or top edge, but not on right or bottom edge
 - example: check if triangle on same side of edge as offscreen point
Interpolation
Interpolation During Scan Conversion

- Drawing pixels in polygon requires interpolating many values between vertices
 - \(r, g, b \) colour components
 - Use for shading
 - \(z \) values
 - \(u, v \) texture coordinates
 - \(N_x, N_y, N_z \) surface normals
- Equivalent methods (for triangles)
 - Bilinear interpolation
 - Barycentric coordinates
Bilinear Interpolation

- interpolate quantity along L and R edges, as a function of y
 - then interpolate quantity as a function of x
Barycentric Coordinates

- non-orthogonal coordinate system based on triangle itself
 - origin: P_1, basis vectors: (P_2-P_1) and (P_3-P_1)

$$P = P_1 + \beta(P_2-P_1) + \gamma(P_3-P_1)$$
Barycentric Coordinates

\[\beta = -1 \]
\[\gamma = 1.5 \]
\[\gamma = 1 \]
\[\gamma = 0.5 \]
\[\gamma = 0 \]
\[\gamma = -0.5 \]

\[\beta = 0 \]
\[\beta = 0.5 \]
\[\beta = 1 \]
\[\beta = 1.5 \]
Barycentric Coordinates

- non-orthogonal coordinate system based on triangle itself
 - origin: P_1, basis vectors: $(P_2 - P_1)$ and $(P_3 - P_1)$

\[
P = P_1 + \beta(P_2 - P_1) + \gamma(P_3 - P_1)
\]

\[
P = (1-\beta-\gamma)P_1 + \beta P_2 + \gamma P_3
\]

\[
P = \alpha P_1 + \beta P_2 + \gamma P_3
\]

$\alpha = 1$

$\alpha = 0$
Using Barycentric Coordinates

- weighted combination of vertices
- smooth mixing
- speedup
 - compute once per triangle

\[
P = \alpha \cdot P_1 + \beta \cdot P_2 + \gamma \cdot P_3
\]
\[
\alpha + \beta + \gamma = 1
\]
\[
0 \leq \alpha, \beta, \gamma \leq 1 \text{ for points inside triangle}
\]

"convex combination of points"
Deriving Barycentric From Bilinear

- from bilinear interpolation of point P on scanline

\[P_L = P_2 + \frac{d_1}{d_1 + d_2}(P_3 - P_2) \]

\[= (1 - \frac{d_1}{d_1 + d_2})P_2 + \frac{d_1}{d_1 + d_2}P_3 = \]

\[= \frac{d_2}{d_1 + d_2}P_2 + \frac{d_1}{d_1 + d_2}P_3 \]
Deriving Barycentric From Bilineaer

• similarly

\[P_R = P_2 + \frac{b_1}{b_1 + b_2} (P_1 - P_2) \]

\[= (1 - \frac{b_1}{b_1 + b_2})P_2 + \frac{b_1}{b_1 + b_2} P_1 = \]

\[= \frac{b_2}{b_1 + b_2} P_2 + \frac{b_1}{b_1 + b_2} P_1 \]
Deriving Barycentric From Bilinear

• combining

\[P = \frac{c_2}{c_1 + c_2} \cdot P_L + \frac{c_1}{c_1 + c_2} \cdot P_R \]

\[P_L = \frac{d_2}{d_1 + d_2} P_2 + \frac{d_1}{d_1 + d_2} P_3 \]

\[P_R = \frac{b_2}{b_1 + b_2} P_2 + \frac{b_1}{b_1 + b_2} P_1 \]

• gives

\[P = \frac{c_2}{c_1 + c_2} \left(\frac{d_2}{d_1 + d_2} P_2 + \frac{d_1}{d_1 + d_2} P_3 \right) + \frac{c_1}{c_1 + c_2} \left(\frac{b_2}{b_1 + b_2} P_2 + \frac{b_1}{b_1 + b_2} P_1 \right) \]
Deriving Barycentric From Bilinear

thus \(P = \alpha P_1 + \beta P_2 + \gamma P_3 \) with

\[
\alpha = \frac{c_1 b_1}{c_1 + c_2 b_1 + b_2},
\beta = \frac{c_2 d_2}{c_1 + c_2 d_1 + d_2} + \frac{c_1 b_2}{c_1 + c_2 b_1 + b_2},
\gamma = \frac{c_2 d_1}{c_1 + c_2 d_1 + d_2}
\]

• can verify barycentric properties

\[
\alpha + \beta + \gamma = 1, \quad 0 \leq \alpha, \beta, \gamma \leq 1
\]
Computing Barycentric Coordinates

- 2D triangle area
 - half of parallelogram area
 - from cross product

\[
A = A_{P1} + A_{P2} + A_{P3}
\]

\[
\alpha = A_{P1} / A
\]

\[
\beta = A_{P2} / A
\]

\[
\gamma = A_{P3} / A
\]