Collision/Acceleration II

Review: Select/Hit Picking
- assign (hierarchical) integer key/name(s)
- small region around cursor as new viewpoint
- redraw in selection mode
 - equivalent to casting pick “tube”
- store keys, depth for drawn objects in hit list
- examine hit list
 - usually use frontmost, but up to application

Correction/Review: Hit List
- glSelectBuffer(buffer size, “buffer”)
 - where to store hit list data
- on hit, copy entire contents of name stack to output buffer.
 - hit record
 - number of names on stack
 - minimum and maximum depth of object vertices
 - depth lies in the z-buffer range [0, 1]
 - multiplied by 2^32 - 1 then rounded to nearest int

Accelerating Collision Detection
- two kinds of approaches (many others also)
 - collision proxies / bounding volumes
 - spatial data structures to localize
- used for both 2D and 3D
- used to accelerate many things, not just collision detection
 - raytracing
 - culling geometry before using standard rendering pipeline

Collision Proxies
- proxy: something that takes place of real object
 - cheaper than general mesh-mesh intersections
- collision proxy (bounding volume) is piece of geometry used to represent complex object for purposes of finding collision
 - if proxy collides, object is said to collide
 - collision points mapped back onto original object
 - good proxy: cheap to compute collisions for, tight fit to the real geometry
- common proxies: sphere, cylinder, box, ellipsoid
 - consider: fat player, thin player, rocket, car...

Spatial Data Structures
- can only hit something that is close
 - spatial data structures tell you what is close to object
 - uniform grid, octrees, kd-trees, BSP trees
 - bounding volume hierarchies
 - OBB trees
- for player-wall problem, typically use same spatial data structure as for rendering
 - BSP trees most common

Unified Grids
- axis-aligned
- divide space uniformly

Quadtrees/Octrees
- axis-aligned
- subdivide until no points in cell

Review: Collision Detection
- boundary check
 - perimeter of world vs. viewpoint or objects
 - 2D/3D absolute coordinates for bounds
 - simple point in space for viewpoint/objects
 - set of fixed barriers
 - walls in maze game
 - 2D/3D absolute coordinate system
 - set of moveable objects
 - one object against set of items
 - missile vs. several tanks
 - multiple objects against each other
 - punching game: arms and legs of players
 - room of bouncing balls

Trade-off in Choosing Proxies
- increasing complexity & tightness of fit
 - AABB: axis aligned bounding box
 - OBB: oriented bounding box, arbitrary alignment
 - k-dops – shapes bounded by planes at fixed orientations
 - discrete orientation polytope
- decreasing cost of (overlap tests + proxy update)

Reading for Collision/Acceleration
- FCG Sect 10.9 Sub-Linear

Collision/Acceleration II
Jaggy Line Segments
- We tried to sample a line segment so it would map to a 2D raster display.
- We quantized the pixel values to 0 or 1.
- We saw stairsteps / jaggies.

Supersample and Average
- Supersampling: create image at higher resolution.
- E.g. 768x768 instead of 256x256.
- Shade pixels.
- FCG Sec 4.5, Fig 4.14.
- 3x3 unweighted filter.
- 2x2 supersampling with 3x3 unweighted filter.

Weighted Area Sampling
- Intuitively, pixel cut through the center should be more heavily weighted than one cut along corner.
- Weighting function, W(x,y).
- Specifies the contribution of primitive passing through the point (x, y) from pixel center.
- Gaussian filter (or approximation) commonly used.

Supersampling Example: Image
- Intuitively, pixel cut through the center should be more heavily weighted than one cut along corner.
- Weighting function, W(x,y).
- Specifies the contribution of primitive passing through the point (x, y) from pixel center.
- Gaussian filter (or approximation) commonly used.
Image As Signal
- image as spatial signal
- 2D raster image
- discrete sampling of 2D spatial signal
- 1D slice of raster image
- discrete sampling of 1D spatial signal

Sampling Frequency
- if don’t sample often enough, resulting signal misinterpreted as lower-frequency one
- we call this aliasing

Sampling Theorem
- continuous signal can be completely recovered from its samples
 iff
 sampling rate greater than twice maximum frequency present in signal
 - Claude Shannon

Nyquist Rate
- lower bound on sampling rate
 - twice the highest frequency component in the image’s spectrum

Aliasing
- incorrect appearance of high frequencies as low frequencies
- to avoid: antialiasing
 - supersample
 - sample at higher frequency
 - low pass filtering
 - remove high frequency function parts
 - aka prefiltering, band-limiting

Low-Pass Filtering
- filter for low frequencies
- blur

Texture Anti-aliasing
- texture mipmapping: low pass filter

Temporal Antialiasing
- subtle point: collision detection about algorithms for finding collisions in time as much as space
- temporal sampling
 - aliasing: can miss collision completely with point samples!

Filtering
- low pass
- blur
- high pass
- edge finding