Introduction to Computer Systems

Unit 1c
Instance Variables and Structs

Reading

Companion
2.4.4-2.4.6

Textbook

2ed: 3.9.1
1ed: 3.9.1

Instance Variables

i Class X L-
{ static int i; L
L intj; 4 b

il Object instance of X |
b ointj; [] &

Variables that are an instance of a class or struct

* created dynamically
* many instances of the same variable can co-exist

Javavs C

e Java: objects are instances of non-static variables of a class
o (C: structs are named variable groups, instance is also called a struct

Accessing an instance variable
* requires a reference to a particular object (pointer to a struct)
* then variable name chooses a variable in that object (struct)

StFUCtS iﬂ C (S4-instance-var)

struct D { class D {
!nt e; ~ publ?c ?nt e;
int f; ~J public int f;
}; §
A struct is a

collection of variables of arbitrary type, allocated and accessed together

Declaration

similar to declaring a Java class without methods

name is “struct” plus name provided by programer
static struct D dO:

dynamic struct D* d1;

Access
static d0.e = dO.f:

dynamic dl->e =dl->f;

Struct Allocation

struct D {
int e;
int f;
};

Static structs are allocated by the compiler
Static Memory Layout

0x1000: value of dO0.e|

i<Struct D do;}

Dynamic structs are allocated at runtime

the variable that stores the struct pointer may be static or dynamic

the struct itself is allocated when the program calls malloc
Static Memory Layout

fstruct D* d1;

° runtime allocatlon of dynamlc struct

v0|d foo () {

I d1 = (struct D*) malloc (sizeof(struct D));
4 i

e assume that this code allocates the struct at address 0x2000

Struct Access

struct D {
int e;
int f;
};

Static and dynamic differ by an extra memory access

dynamic structs have dynamic address that must be read from memory
In both cases the offset to variable from base of struct is static

M[Ox1000] « m[0Ox1004] M[M[Ox1000]+0] « m[m[Ox1000]+4]

r[0] <« O0x1000 r[0] « O0x1000
r[1] <« m[r[O]] load d1
r[1] <« m]r[0]+4] r[2] <« m[r[1]+4]

m[r[0]] « r[1] mlr[1]] « r[2]

r[0] « 0x1000 r[0] « 0x1000
r[l] <« m[r[0]] load d1
r[1] <« mi[r[0]+4] r[2] <+« mir[1]+4]
m[r[0]] « r[1] m[r[1]] « r[2]
ld $0x1000, rO # rO = address of dO ld $0x1000, rO # rO = address of d1
Id 4(r0), r1 #r0 = dO.f Id (r0), r1 #rl =d1
strl, (r0) # d0.e = dO.f Id 4(r1), r2 #r2 =dl->f

str2,(rl) #dl->e=dl->f

The revised load/store base plus offset instructions

dynamic base address in a register plus a static offset (displacement)

Id 4(r1), r2

The Revised Load-Store ISA

Machine format for base + offset

note that the offset will in our case always be a multiple of 4

also note that we only have a single hex digit in instruction to store it

and so, we will store offset / 4 in the instruction

The Revised ISA

Name Semantics Assembly Machine
load immediate r[d] « v Id $v, rd 0d-- vvvvvvvy
load base+offset r[d] « m[r[s]+(o=p*4)] Id o(rs), rd 1psd
load indexed rld] « mlr[s]+4*r[i]] Id (rs,ri,4), rd 2sid
store base+offset mir[d]+(o=p*4)] + r[s] st rs, o(rd) 3spd
store indexed mlr[d]+4*r[i]] < r[s] st rs, (rd,ri,4) 4sdi

