
CPSC 213
Introduction to Computer Systems

Unit 1c

Instance Variables and Structs

1

Reading

‣Companion
• 2.4.4-2.4.6

‣Textbook
• 2ed: 3.9.1

• 1ed: 3.9.1

2

Instance Variables

‣Variables that are an instance of a class or struct
• created dynamically

• many instances of the same variable can co-exist

‣Java vs C
• Java:	 objects are instances of non-static variables of a class

• C:	 	 structs are named variable groups, instance is also called a struct

‣Accessing an instance variable
• requires a reference to a particular object (pointer to a struct)

• then variable name chooses a variable in that object (struct)

Class X
 static int i;
 int j;

Object instance of X
 int j;

Object instance of X
 int j;

Object instance of X
 int j;

Object instance of X
 int j;

Object instance of X
 int j;

X anX

anX.jX.i

3

Structs in C (S4-instance-var)

‣A struct is a
• collection of variables of arbitrary type, allocated and accessed together

‣Declaration
• similar to declaring a Java class without methods

• name is “struct” plus name provided by programer

• static

• dynamic

‣Access
• static

• dynamic

struct D {
 int e;
 int f;
};

class D {
 public int e;
 public int f;
}≈

struct D d0;

struct D* d1;

d0.e = d0.f;

d1->e = d1->f;

4

Struct Allocation

‣Static structs are allocated by the compiler

‣Dynamic structs are allocated at runtime
• the variable that stores the struct pointer may be static or dynamic

• the struct itself is allocated when the program calls malloc

struct D d0;

struct D {
 int e;
 int f;
};

Static Memory Layout

0x1000: value of d0.e
0x1004: value of d0.f

struct D* d1;

Static Memory Layout

0x1000: value of d1

5

• runtime allocation of dynamic struct

• assume that this code allocates the struct at address 0x2000

void foo () {
 d1 = (struct D*) malloc (sizeof(struct D));
}

0x1000: 0x2000

0x2000: value of d1->e
0x2004: value of d1->f

struct D {
 int e;
 int f;
};

6

Struct Access

‣Static and dynamic differ by an extra memory access
• dynamic structs have dynamic address that must be read from memory

• in both cases the offset to variable from base of struct is static

struct D {
 int e;
 int f;
};

d0.e = d0.f; d1->e = d1->f;

m[0x1000] ← m[0x1004] m[m[0x1000]+0] ← m[m[0x1000]+4]

r[0] ← 0x1000

r[1] ← m[r[0]+4]
m[r[0]] ← r[1]

r[0] ← 0x1000
r[1] ← m[r[0]]
r[2] ← m[r[1]+4]
m[r[1]] ← r[2]

load d1

7

struct D {
 int e;
 int f;
};

d0.e = d0.f; d1->e = d1->f;

r[0] ← 0x1000

r[1] ← m[r[0]+4]
m[r[0]] ← r[1]

r[0] ← 0x1000
r[1] ← m[r[0]]
r[2] ← m[r[1]+4]
m[r[1]] ← r[2]

load d1

ld $0x1000, r0 # r0 = address of d0
ld 4(r0), r1 # r0 = d0.f
st r1, (r0) # d0.e = d0.f

ld $0x1000, r0 # r0 = address of d1
ld (r0), r1 # r1 = d1
ld 4(r1), r2 # r2 = d1->f
st r2, (r1) # d1->e = d1->f

‣The revised load/store base plus offset instructions
• dynamic base address in a register plus a static offset (displacement)

ld 4(r1), r2

8

‣Machine format for base + offset
• note that the offset will in our case always be a multiple of 4

• also note that we only have a single hex digit in instruction to store it

• and so, we will store offset / 4 in the instruction

‣The Revised ISA

The Revised Load-Store ISA

Name Semantics Assembly Machine
load immediate r[d] ← v ld $v, rd 0d-- vvvvvvvv
load base+offset r[d] ← m[r[s]+(o=p*4)] ld o(rs), rd 1psd
load indexed r[d] ← m[r[s]+4*r[i]] ld (rs,ri,4), rd 2sid
store base+offset m[r[d]+(o=p*4)] ← r[s] st rs, o(rd) 3spd
store indexed m[r[d]+4*r[i]] ← r[s] st rs, (rd,ri,4) 4sdi

9

