
CPSC 213
Introduction to Computer Systems

Unit 1a

Numbers and Memory
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The Big Picture

‣Build machine model of execution
• for Java and C programs

• by examining language features

• and deciding how they are implemented by the machine

‣What is required
• design an ISA into which programs can be compiled

• implement the ISA in Java in the hardware simulator

‣Our approach
• examine code snippets that exemplify each language feature in turn

• look at Java and C, pausing to dig deeper when C is different from Java

• design and implement ISA as needed

‣ The simulator is an important tool
• machine execution is hard to visualize without it

• this visualization is really our WHOLE POINT here
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Languages and Tools

‣SM213 Assembly
• you will trace, write, read

• use SM213 simulator to trace and execute 

‣Java
• you will read, write

• use Eclipse IDE to edit, compile, debug, run

• SM213 simulator written in Java; you will implement specific pieces

‣C
• you will read, write

• gcc to compile, gdb to debug, command line to run
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Lab/Assignment 1

‣SimpleMachine simulator
• load code into Eclipse and get it to build/run

• write and test MainMemory.java
-get

-set

-isAccessAligned

-bytesToInteger

-integerToBytes
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The Main Memory Class

‣The SM213 simulator has two main classes
• CPU implements the fetch-execute cycle

• MainMemory implements memory

‣The first step in building our processor
• implement 6 main internal methods of MainMemory

CPU
    fetch
    execute

MainMemory
    isAligned
    bytesToInteger
    integerToBytes
    get
    set

read
readInteger

write
writeInteger
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The Code You Will Implement

/**
 * Determine whether an address is aligned to specified length.
 * @param address memory address
 * @param length byte length
 * @return true iff address is aligned to length
 */
protected boolean isAccessAligned (int address, int length) {
  return false;
}
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/**
 * Convert an sequence of four bytes into a Big Endian integer.
 * @param byteAtAddrPlus0 value of byte with lowest memory address 
 * @param byteAtAddrPlus1 value of byte at base address plus 1
 * @param byteAtAddrPlus2 value of byte at base address plus 2
 * @param byteAtAddrPlus3 value of byte at base address plus 3 
 * @return Big Endian integer formed by these four bytes
 */
public int bytesToInteger (UnsignedByte byteAtAddrPlus0, 
                               UnsignedByte byteAtAddrPlus1, 
                               UnsignedByte byteAtAddrPlus2, 
                               UnsignedByte byteAtAddrPlus3) {
  return 0;
}

/**
 * Convert a Big Endian integer into an array of 4 bytes
 * @param  i an Big Endian integer
 * @return an array of UnsignedByte 
 */
public UnsignedByte[] integerToBytes (int i) {
  return null;
}
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**
 * Fetch a sequence of bytes from memory.
 * @param address address of the first byte to fetch
 * @param length  number of bytes to fetch
 * @return an array of UnsignedByte 
 */
protected UnsignedByte[] get (int address, int length) throws ... {
  UnsignedByte[] ub = new UnsignedByte [length];
  ub[0] = new UnsignedByte (0); // with appropriate value
  // repeat to ub[length-1] ...
  return ub;
}

/**
 * Store a sequence of bytes into memory.
 * @param  address                 address of the first memory byte
 * @param  value                   an array of UnsignedByte values
 * @throws InvalidAddressException if any address is invalid
 */
protected void set (int address, UnsignedByte[] value) throws ... {
  byte b[] = new byte [value.length];
  for (int i=0; i<value.length; i++)
    b[i] = (byte) value[i].value();
  // write b into memory ...
}
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Reading

‣Companion
• previous module: 1, 2.1

• new: 2.2 (focus on 2.2.2 for this week)

‣Textbook
• A Historical Perspective, Machine-Level Code, Data Formats, Data 

Alignment.

• 2ed: 3.1-3.2.1, 3.3, 3.9.3 
-  (skip 3.2.2 and 3.2.3)

• 1ed: 3.1-3.2.1, 3.3, 3.10 
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Numbers and Bits
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Binary, Hex, and Decimal Refresher

‣Hexadecimal notation
• number starts with “0x” , each digit is base 16 not 

base 10

• e.g.: 0x2a3 = 2x162 + 10x161 + 3x160

• a convenient way to describe numbers when 
binary format is important

• each hex digit (hexit) is stored by 4 bits:
 (0|1)x8 + (0|1)x4 + (0|1)x2 + (0|1)x1

‣Examples
• 0x10 in binary? in decimal?

• 0x2e in binary? in decimal?

• 1101 1000 1001 0110 in hex? in decimal?

• 102 in binary? in hex?
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Bit Shifting

‣ bit shifting: multiply/divide by powers of 2

‣ left shift by k bits, "<< k": multiply by 2k

• old bits on left end drop off, new bits on right end set to 0

• examples
- 0000 1010 << 1 = 0001 0100; 0x0a << 1 = 0x14; 10 << 1 = 20; 10 * 2 = 20

- 0000 1110 << 2 = 0011 1000; 0x0e << 2 = 0x38; 14 << 2 = 28; 14 * 4 = 56

• << k, left shift by k bits, multiply by 2k

- old bits on left end drop off, new bits on right end set to 0

‣ right shift by k bits, ">> k": divide by 2k

• old bits on right end drop off, new bits on left end set to 0 
- (in C etc... stay tuned for Java!)

• examples
- 1010 >> 1 = 0101

- 1110 >> 2 = 0011

‣ why do this? two good reasons:
• much faster than multiply. much, much faster than division

• good way to move bits around to where you need them
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Masking

‣bitmask: pattern of bits you construct with/for logical 
operations
• mask with 0 to throw bits away

• mask with 1 to let bit values pass through

‣masking in binary: remember your binary truth tables!
• &: AND, |: OR

• 1&1=1, 1&0=0, 0&1=0, 0&0=0

• 1|1=1, 1|0=1, 0|1=1, 0|0=0

• example: 1111 & 0011 = 0011

‣masking in hex: 
• mask with & 0 to turn bits off

• mask with & 0xf (1111 in binary) to let bit values pass through

• example: 0x00ff & 0x3a2b = 0x002b
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Two's Complement: Reminder

‣unsigned
• all possible values interpreted as positive numbers

• byte (8 bits)

‣signed: two's complement
• the first half of the numbers are positive, the second half are negative

• start at 0, go to top positive value, "wrap around" to most negative value, 
end up at -1

2550

0xff0x0

0 +127-128 -1

0x0 0x7f0x80 0xff
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Two's Complement: Byte
B
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Two's Complement: 32-Bit Integers

‣unsigned
• all possible values interpreted as positive numbers

• int (32 bits)

‣signed: two's complement
• the first half of the numbers are positive, the second half are negative

• start at 0, go to top positive value, "wrap around" to most negative value, 
end up at -1

4,294,967,2950

0xffffffff0x0

0 2,147,483,647-2,147,483,648 -1

0x0 0x7fffffff0x80000000 0xffffffff
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Two's Complement and Sign Extension

‣normally, pad with 0s when extending to larger size
• 0x8b byte (139) becomes 0x0000008b int (139)

‣but that would change value for negative 2's comp:
• 0xff byte (-1) should not be 0x000000ff int (255)

‣so: pad with Fs with negative numbers in 2's comp:
• 0xff byte (-1) becomes 0xffffffff int (-1)

• in binary: padding with 1, not 0

‣ reminder: why do all this?
• add/subtract works without checking if number positive or negative
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Bit Shifting in Java

‣signed/arithmetic right shift by k bits, ">> k": divide by 2k

• old bits on right end drop off, new bits on left end set to top (sign) bit 

• examples
- 1010 >> 1 = 1101

- 1110 >> 2 = 1111

- 0010 >> 1 = 0001

- 0110 >> 2 = 0001

‣unsigned/logical right shift by k bits, ">>>k": 
• old bits on right end drop off, new bits on left end set to 0

• but.. be careful - requires int/long and automatically promotes up
- so bytes automatically promoted, but with sign extension

- safest to construct bitmasks with int/long, not bytes
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Numbers in Memory
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Memory and Integers

‣Memory is byte addressed
• every byte of memory has a unique address, numbered from 

0 to N

• N is huge: billions is common these days (2-16 GB)

‣ Integers can be declared at different sizes
• byte is 1 byte, 8 bits, 2 hexits

• short is 2 bytes, 16 bits, 4 hexits

• int or word  is 4 bytes, 32 bits, 8 hexits

• long is 8 bytes, 64 bits, 16 hexits

‣ Integers in memory
• reading or writing an integer requires specifying a range of 

byte addresses
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N

.

.
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Making Integers from Bytes

‣Our first architectural decisions
• assembling memory bytes into integer registers

‣Consider 4-byte memory word and 32-bit register
• it has memory addresses i, i+1, i+2, and i+3

• we’ll just say it's “at address i and is 4 bytes long”

• e.g., the word at address 4 is in bytes 4, 5, 6 and 7.

‣Big or Little Endian (end means where start from, not finish)
• we could start with the BIG END of the number (most everyone but Intel)

• or we could start with the LITTLE END (Intel x86, some others)

i

231 to 224

i + 1

223 to 216

i + 2

215 to 28

i + 3

27 to 20

i + 3

231 to 224

i + 2

223 to 216

i + 1

215 to 28

i

27 to 20

i

i + 1

i + 2

i + 3

...

...

✔

Memory

Register bits

Register bits

21



Making Integers from Bytes

‣Our first architectural decisions
• assembling memory bytes into integer registers

‣Consider 4-byte memory word and 32-bit register
• it has memory addresses i, i+1, i+2, and i+3

• we’ll just say it's “at address i and is 4 bytes long”

• e.g., the word at address 4 is in bytes 4, 5, 6 and 7.

‣Big or Little Endian (end means where start from, not finish)
• we could start with the BIG END of the number (most everyone but Intel)

• or we could start with the LITTLE END (Intel x86, some others)

i

231 to 224

i + 1

223 to 216

i + 2

215 to 28

i + 3

27 to 20

i + 3

231 to 224

i + 2

223 to 216

i + 1

215 to 28

i

27 to 20

i

i + 1

i + 2

i + 3

...

...

Memory

Register bits

Register bits

21



‣Aligned or Unaligned Addresses
• we could allow any number to address a multi-byte integer

• or we could require that addresses be aligned to integer-size boundary

• Power-of-Two Aligned Addresses Simplify Hardware
- smaller things always fit complete inside of bigger things

- byte address from integer address: divide by power to two, which is just shifting bits

j / 2k == j >> k (j shifted k bits to right)

word contains exactly two 
complete shorts

address modulo chunk-size is always zero

✔

✗
* disallowed on many
  architectures
* allowed on Intel, 
  but slower

✗ ✗ ✗ * SM213 alignment:
  4-byte words
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Computing Alignment

‣ boolean align(number, size)
• does a number fit nicely for a particular size (in bytes)?

‣ divide number n by size s (in bytes), aligned if no 
remainder
• easy if number is decimal

• otherwise convert from hex or binary to decimal

‣ check if n mod s = 0 
• mod notation usually '%'. same as division, of course...

‣ check if certain number of final bits are all 0
• pattern?

- last 1 digit for 2-byte short

- last 2 digits for 4-byte world

- last 3 digits for 8-byte longlong

• last k digits, where 2k =s (size in bytes) 

• easy if number is hex: convert to binary and check
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In the Lab ... Revisited

‣SimpleMachine simulator
• load code into Eclipse and get it to build/run

• write and test MainMemory.java
- get/set should check for out of bounds access but not alignment

- isAccessAligned checks for alignment
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Questions

‣Which of the following statement (s) are true
• [A]	 6 == 1102 is aligned for addressing a short

• [B]	 6 == 1102 is aligned for addressing a int

• [C]	 20 == 101002 is aligned for addressing a int 

• [D]	 20 == 101002 is aligned for addressing a long 
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‣Which of the following statements are true
• [A]	 memory stores Big Endian integers

• [B]	 memory stores bytes interpreted by the CPU as Big Endian integers

• [C]	 Neither

• [D] I don’t know
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‣Which of these are true
• [A]	 The Java constants 16 and 0x10 are exactly the same integer

• [B]	 16 and 0x10 are different integers

• [C]	 Neither

• [D]	 I don't know
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‣What is the Big-Endian integer value at address 4 below?
• [A] 		 0x1c04b673
• [B] 		 0xc1406b37
• [C] 	      0x73b6041c
• [D] 		 0x376b40c1
• [E]	 	 none of these

• [F]  I don’t know

0x0: 0xfe

0x1: 0x32

0x2: 0x87

0x3: 0x9a

0x4: 0x73

0x5: 0xb6

0x6: 0x04

0x7: 0x1c

Memory
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‣What is the value of i after this Java statement executes?

	      i = 0xff8b0000 & 0x00ff0000;
• [A]	 0xffff0000
• [B]	 0xff8b0000
• [C]	 0x008b0000
• [D] I don’t know
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‣What is the value of i after this Java statement executes?

            int i = (0x0000008b) << 16;

• [A]	 	 0x8b
• [B]	 	 0x0000008b
• [C]	 	 0x008b0000
• [D]	 	 0xff8b0000
• [E]	 	 None of these

• [F]  I don’t know
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‣What is the value of i after this Java statement executes?

            int i = (byte)(0x8b) << 16;

• [A]	 	 0x8b
• [B]	 	 0x0000008b
• [C]	 	 0x008b0000
• [D]	 	 0xff8b0000
• [E]	 	 None of these

• [F]  I don’t know
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