
CPSC 213
Introduction to Computer Systems

Unit 1a

Numbers and Memory

1

The Big Picture

‣Build machine model of execution
• for Java and C programs

• by examining language features

• and deciding how they are implemented by the machine

‣What is required
• design an ISA into which programs can be compiled

• implement the ISA in Java in the hardware simulator

‣Our approach
• examine code snippets that exemplify each language feature in turn

• look at Java and C, pausing to dig deeper when C is different from Java

• design and implement ISA as needed

‣ The simulator is an important tool
• machine execution is hard to visualize without it

• this visualization is really our WHOLE POINT here

2

Languages and Tools

‣SM213 Assembly
• you will trace, write, read

• use SM213 simulator to trace and execute

‣Java
• you will read, write

• use Eclipse IDE to edit, compile, debug, run

• SM213 simulator written in Java; you will implement specific pieces

‣C
• you will read, write

• gcc to compile, gdb to debug, command line to run

3

Lab/Assignment 1

‣SimpleMachine simulator
• load code into Eclipse and get it to build/run

• write and test MainMemory.java
-get

-set

-isAccessAligned

-bytesToInteger

-integerToBytes

4

The Main Memory Class

‣The SM213 simulator has two main classes
• CPU implements the fetch-execute cycle

• MainMemory implements memory

‣The first step in building our processor
• implement 6 main internal methods of MainMemory

CPU
 fetch
 execute

MainMemory
 isAligned
 bytesToInteger
 integerToBytes
 get
 set

read
readInteger

write
writeInteger

5

The Code You Will Implement

/**
 * Determine whether an address is aligned to specified length.
 * @param address memory address
 * @param length byte length
 * @return true iff address is aligned to length
 */
protected boolean isAccessAligned (int address, int length) {
 return false;
}

6

/**
 * Convert an sequence of four bytes into a Big Endian integer.
 * @param byteAtAddrPlus0 value of byte with lowest memory address
 * @param byteAtAddrPlus1 value of byte at base address plus 1
 * @param byteAtAddrPlus2 value of byte at base address plus 2
 * @param byteAtAddrPlus3 value of byte at base address plus 3
 * @return Big Endian integer formed by these four bytes
 */
public int bytesToInteger (UnsignedByte byteAtAddrPlus0,
 UnsignedByte byteAtAddrPlus1,
 UnsignedByte byteAtAddrPlus2,
 UnsignedByte byteAtAddrPlus3) {
 return 0;
}

/**
 * Convert a Big Endian integer into an array of 4 bytes
 * @param i an Big Endian integer
 * @return an array of UnsignedByte
 */
public UnsignedByte[] integerToBytes (int i) {
 return null;
}

7

**
 * Fetch a sequence of bytes from memory.
 * @param address address of the first byte to fetch
 * @param length number of bytes to fetch
 * @return an array of UnsignedByte
 */
protected UnsignedByte[] get (int address, int length) throws ... {
 UnsignedByte[] ub = new UnsignedByte [length];
 ub[0] = new UnsignedByte (0); // with appropriate value
 // repeat to ub[length-1] ...
 return ub;
}

/**
 * Store a sequence of bytes into memory.
 * @param address address of the first memory byte
 * @param value an array of UnsignedByte values
 * @throws InvalidAddressException if any address is invalid
 */
protected void set (int address, UnsignedByte[] value) throws ... {
 byte b[] = new byte [value.length];
 for (int i=0; i<value.length; i++)
 b[i] = (byte) value[i].value();
 // write b into memory ...
}

8

Reading

‣Companion
• previous module: 1, 2.1

• new: 2.2 (focus on 2.2.2 for this week)

‣Textbook
• A Historical Perspective, Machine-Level Code, Data Formats, Data

Alignment.

• 2ed: 3.1-3.2.1, 3.3, 3.9.3
- (skip 3.2.2 and 3.2.3)

• 1ed: 3.1-3.2.1, 3.3, 3.10

9

Numbers and Bits

10

Binary, Hex, and Decimal Refresher

‣Hexadecimal notation
• number starts with “0x” , each digit is base 16 not

base 10

• e.g.: 0x2a3 = 2x162 + 10x161 + 3x160

• a convenient way to describe numbers when
binary format is important

• each hex digit (hexit) is stored by 4 bits:
 (0|1)x8 + (0|1)x4 + (0|1)x2 + (0|1)x1

‣Examples
• 0x10 in binary? in decimal?

• 0x2e in binary? in decimal?

• 1101 1000 1001 0110 in hex? in decimal?

• 102 in binary? in hex?

B

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

H

0

1

2

3

4

5

6

7

8

9

a

b

c

d

e

f

D

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

11

Bit Shifting

‣ bit shifting: multiply/divide by powers of 2

‣ left shift by k bits, "<< k": multiply by 2k

• old bits on left end drop off, new bits on right end set to 0

• examples
- 0000 1010 << 1 = 0001 0100; 0x0a << 1 = 0x14; 10 << 1 = 20; 10 * 2 = 20

- 0000 1110 << 2 = 0011 1000; 0x0e << 2 = 0x38; 14 << 2 = 28; 14 * 4 = 56

• << k, left shift by k bits, multiply by 2k

- old bits on left end drop off, new bits on right end set to 0

‣ right shift by k bits, ">> k": divide by 2k

• old bits on right end drop off, new bits on left end set to 0
- (in C etc... stay tuned for Java!)

• examples
- 1010 >> 1 = 0101

- 1110 >> 2 = 0011

‣ why do this? two good reasons:
• much faster than multiply. much, much faster than division

• good way to move bits around to where you need them

12

Masking

‣bitmask: pattern of bits you construct with/for logical
operations
• mask with 0 to throw bits away

• mask with 1 to let bit values pass through

‣masking in binary: remember your binary truth tables!
• &: AND, |: OR

• 1&1=1, 1&0=0, 0&1=0, 0&0=0

• 1|1=1, 1|0=1, 0|1=1, 0|0=0

• example: 1111 & 0011 = 0011

‣masking in hex:
• mask with & 0 to turn bits off

• mask with & 0xf (1111 in binary) to let bit values pass through

• example: 0x00ff & 0x3a2b = 0x002b

13

Two's Complement: Reminder

‣unsigned
• all possible values interpreted as positive numbers

• byte (8 bits)

‣signed: two's complement
• the first half of the numbers are positive, the second half are negative

• start at 0, go to top positive value, "wrap around" to most negative value,
end up at -1

2550

0xff0x0

0 +127-128 -1

0x0 0x7f0x80 0xff

14

Two's Complement: Byte
B

1111 1111

1111 1110

1111 1101

1111 1100

1111 1011

1111 1010

1111 1001

1111 1000

1111 0111

1111 0110

1111 0101

1111 0100

1111 0011

1111 0010

1111 0001

1111 0000

H

0xff

0xfe

0xfd

0xfc

0xfb

0xfa

0xf9

0xf8

0xf7

0xf6

0xf5

0xf4

0xf3

0xf2

0xf1

0xf0

Unsigned

255

254

253

252

251

250

249

248

247

246

245

244

243

242

241

240

Signed Decimal

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

-13

-14

-15

-16

15

Two's Complement: 32-Bit Integers

‣unsigned
• all possible values interpreted as positive numbers

• int (32 bits)

‣signed: two's complement
• the first half of the numbers are positive, the second half are negative

• start at 0, go to top positive value, "wrap around" to most negative value,
end up at -1

4,294,967,2950

0xffffffff0x0

0 2,147,483,647-2,147,483,648 -1

0x0 0x7fffffff0x80000000 0xffffffff

16

Two's Complement and Sign Extension

‣normally, pad with 0s when extending to larger size
• 0x8b byte (139) becomes 0x0000008b int (139)

‣but that would change value for negative 2's comp:
• 0xff byte (-1) should not be 0x000000ff int (255)

‣so: pad with Fs with negative numbers in 2's comp:
• 0xff byte (-1) becomes 0xffffffff int (-1)

• in binary: padding with 1, not 0

‣ reminder: why do all this?
• add/subtract works without checking if number positive or negative

17

Bit Shifting in Java

‣signed/arithmetic right shift by k bits, ">> k": divide by 2k

• old bits on right end drop off, new bits on left end set to top (sign) bit

• examples
- 1010 >> 1 = 1101

- 1110 >> 2 = 1111

- 0010 >> 1 = 0001

- 0110 >> 2 = 0001

‣unsigned/logical right shift by k bits, ">>>k":
• old bits on right end drop off, new bits on left end set to 0

• but.. be careful - requires int/long and automatically promotes up
- so bytes automatically promoted, but with sign extension

- safest to construct bitmasks with int/long, not bytes

18

Numbers in Memory

19

Memory and Integers

‣Memory is byte addressed
• every byte of memory has a unique address, numbered from

0 to N

• N is huge: billions is common these days (2-16 GB)

‣ Integers can be declared at different sizes
• byte is 1 byte, 8 bits, 2 hexits

• short is 2 bytes, 16 bits, 4 hexits

• int or word is 4 bytes, 32 bits, 8 hexits

• long is 8 bytes, 64 bits, 16 hexits

‣ Integers in memory
• reading or writing an integer requires specifying a range of

byte addresses

0

1

2

3

4

5

6

7

8

9

.

.

.

N

.

.

.

20

Making Integers from Bytes

‣Our first architectural decisions
• assembling memory bytes into integer registers

‣Consider 4-byte memory word and 32-bit register
• it has memory addresses i, i+1, i+2, and i+3

• we’ll just say it's “at address i and is 4 bytes long”

• e.g., the word at address 4 is in bytes 4, 5, 6 and 7.

‣Big or Little Endian (end means where start from, not finish)
• we could start with the BIG END of the number (most everyone but Intel)

• or we could start with the LITTLE END (Intel x86, some others)

i

231 to 224

i + 1

223 to 216

i + 2

215 to 28

i + 3

27 to 20

i + 3

231 to 224

i + 2

223 to 216

i + 1

215 to 28

i

27 to 20

i

i + 1

i + 2

i + 3

...

...

✔

Memory

Register bits

Register bits

21

Making Integers from Bytes

‣Our first architectural decisions
• assembling memory bytes into integer registers

‣Consider 4-byte memory word and 32-bit register
• it has memory addresses i, i+1, i+2, and i+3

• we’ll just say it's “at address i and is 4 bytes long”

• e.g., the word at address 4 is in bytes 4, 5, 6 and 7.

‣Big or Little Endian (end means where start from, not finish)
• we could start with the BIG END of the number (most everyone but Intel)

• or we could start with the LITTLE END (Intel x86, some others)

i

231 to 224

i + 1

223 to 216

i + 2

215 to 28

i + 3

27 to 20

i + 3

231 to 224

i + 2

223 to 216

i + 1

215 to 28

i

27 to 20

i

i + 1

i + 2

i + 3

...

...

Memory

Register bits

Register bits

21

‣Aligned or Unaligned Addresses
• we could allow any number to address a multi-byte integer

• or we could require that addresses be aligned to integer-size boundary

• Power-of-Two Aligned Addresses Simplify Hardware
- smaller things always fit complete inside of bigger things

- byte address from integer address: divide by power to two, which is just shifting bits

j / 2k == j >> k (j shifted k bits to right)

word contains exactly two
complete shorts

address modulo chunk-size is always zero

✔

✗
* disallowed on many
 architectures
* allowed on Intel,
 but slower

✗ ✗ ✗ * SM213 alignment:
 4-byte words

22

‣Aligned or Unaligned Addresses
• we could allow any number to address a multi-byte integer

• or we could require that addresses be aligned to integer-size boundary

• Power-of-Two Aligned Addresses Simplify Hardware
- smaller things always fit complete inside of bigger things

- byte address from integer address: divide by power to two, which is just shifting bits

j / 2k == j >> k (j shifted k bits to right)

word contains exactly two
complete shorts

address modulo chunk-size is always zero

✗ ✗ ✗ * SM213 alignment:
 4-byte words

22

Computing Alignment

‣ boolean align(number, size)
• does a number fit nicely for a particular size (in bytes)?

‣ divide number n by size s (in bytes), aligned if no
remainder
• easy if number is decimal

• otherwise convert from hex or binary to decimal

‣ check if n mod s = 0
• mod notation usually '%'. same as division, of course...

‣ check if certain number of final bits are all 0
• pattern?

- last 1 digit for 2-byte short

- last 2 digits for 4-byte world

- last 3 digits for 8-byte longlong

• last k digits, where 2k =s (size in bytes)

• easy if number is hex: convert to binary and check

B

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

H

0

1

2

3

4

5

6

7

8

9

a

b

c

d

e

f

D

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

23

In the Lab ... Revisited

‣SimpleMachine simulator
• load code into Eclipse and get it to build/run

• write and test MainMemory.java
- get/set should check for out of bounds access but not alignment

- isAccessAligned checks for alignment

24

Questions

‣Which of the following statement (s) are true
• [A]	 6 == 1102 is aligned for addressing a short

• [B]	 6 == 1102 is aligned for addressing a int

• [C]	 20 == 101002 is aligned for addressing a int

• [D]	 20 == 101002 is aligned for addressing a long

25

‣Which of the following statements are true
• [A]	 memory stores Big Endian integers

• [B]	 memory stores bytes interpreted by the CPU as Big Endian integers

• [C]	 Neither

• [D] I don’t know

26

‣Which of these are true
• [A]	 The Java constants 16 and 0x10 are exactly the same integer

• [B]	 16 and 0x10 are different integers

• [C]	 Neither

• [D]	 I don't know

27

‣What is the Big-Endian integer value at address 4 below?
• [A] 		 0x1c04b673
• [B] 		 0xc1406b37
• [C] 	 0x73b6041c
• [D] 		 0x376b40c1
• [E]	 	 none of these

• [F] I don’t know

0x0: 0xfe

0x1: 0x32

0x2: 0x87

0x3: 0x9a

0x4: 0x73

0x5: 0xb6

0x6: 0x04

0x7: 0x1c

Memory

28

‣What is the value of i after this Java statement executes?

	 i = 0xff8b0000 & 0x00ff0000;
• [A]	 0xffff0000
• [B]	 0xff8b0000
• [C]	 0x008b0000
• [D] I don’t know

29

‣What is the value of i after this Java statement executes?

 int i = (0x0000008b) << 16;

• [A]	 	 0x8b
• [B]	 	 0x0000008b
• [C]	 	 0x008b0000
• [D]	 	 0xff8b0000
• [E]	 	 None of these

• [F] I don’t know

30

‣What is the value of i after this Java statement executes?

 int i = (byte)(0x8b) << 16;

• [A]	 	 0x8b
• [B]	 	 0x0000008b
• [C]	 	 0x008b0000
• [D]	 	 0xff8b0000
• [E]	 	 None of these

• [F] I don’t know

31

