	Reading	Control Flow	Loops (S5-loop)
CPSC 213 Introduction to Computer Systems Unit 1d Static Control Flow	 Companion 2.7.1-2.7.3, 2.7.5-2.7.6 Textbook 3.6.1-3.6.5 	 The flow of control is the sequence of instruction executions performed by a program every program execution can be described by such a linear sequence Controlling flow in languages like Java 	 In Java public class Foo { static int s = 0; static int i] = new int[10]; static void foo 0 { for (i=0; i<10; i++) s += a[i]; } } In C int s=0; int i; int a[] = {2,4,6,8,10,12,14,16,18,20}; void foo 0 { for (i=0; i<10; i++) s += a[i]; } int a[] = {2,4,6,8,10,12,14,16,18,20}; void foo 0 { for (i=0; i<10; i++) s += a[i]; } }
Implement loops in machine int s=0; int i; int a[] = {2,4,6,8,10,12,14,16,18,20}; void foo 0 { for (i=0; i<10; i++) } Can we implement <i>this</i> loop with the existing ISA?	 Loop unrolling Using array syntax ^{int s=0;} ^{int i;} ^{int s=0;} ^{int i;} ^{int s=0;} ^{int i;} ^{int i;} ^{int i;} ^{int i;} ^{int i;} ^{i = 0;} ^{s += a[i];} ^{i + :;} ^{i = 0;} ^{i + :;} ^{i + :;}	Control-Flow ISA Extensions Conditional branches goto <address> if <condition> Options for evaluating condition unconditional conditional conditional based on value of a register (==0, >0 etc.) goto <address> if <register> <condition> 0 conditional check result of last executed ALU instruction goto <address> if last ALU result <condition> 0 Specifying target address absolute 32-bit address this requires a 6 byte instruction, which means jumps have high overhead is this a serious problem? how would you decide? are jumps for for/while/if etc. different from jumps for procedure call?</condition></address></condition></register></address></condition></address>	 PC Relative Addressing Motivation jumps are common and so we want to make them as fast as possible small instructions are faster than large ones, so make some jumps be two bytes Observation some jumps such as for/while/if etc. normally jump to a nearby instruction so the jump distance can be described by a small number that could fit in a byte PC Relative Addressing specifies jump target as a delta from address of current instruction (actually next) in the execute stage <i>pc register</i> stores the address of next sequential instruction the pc-relative jump delta is applied to the value of the pc register jumping with a delta of 0 jumps to the next instruction jump instructions that use pc-relative addressing are called <i>branches</i> Absolute Addressing specifies jump target using full 32-bit address use when the jump distance too large to fit in a byte
s ISA for Static Control Flow (part 1) • ISA requirement (apparently) • at least one PC-relative jump • specify relative distance using real distance / 2 - why? • at least one absolute jumps • some conditional jumps (at least = and > 0) • make these PC-relative - why? • New instructions (so far) <u>Name pc ← (a=pc+oo*2) br a 8-oo branch if greater pc ← (a=pc+oo*2) if r[c]==0 beq rc, a 9coo branch if greater pc ← (a=pc+oo*2) if r[c]>0 bgt rc, a acoo jump pc ← a (a specified as label) j a b aaaaaaaaa • jump assembly uses label, not direct hex number • PC-relative count starts from next instruction, after fetch increments PC</u>	<pre>statement-blocks goto loop end_loop:</pre>	 This example pseudo code template i=0 loop: if not (i<10) goto end_loop s+=a[i] i++	$\frac{1}{1}$ $\frac{\text{temp_i=0}}{\text{temp_s=0}}$ $\frac{1}{1}$ $\frac{1}$
Two's Complement: Reminder • unsigned • all possible values interpreted as positive numbers • byte (8 bits) 0 0x0 0xff • signed: two's complement • the first half of the numbers are positive, the second half are negative • start at 0, go to top positive value, "wrap around" to most negative value, end up at -1 -128 -1 0 +127 0x80 0xff 0x0 0x7f	Subscription Subscription • unsigned • all possible values interpreted as positive numbers • int (32 bits) 0 • int (32 bits) 0 • ox0 0xffffffff • signed: two's complement • the first half of the numbers are positive, the second half are negative • start at 0, go to top positive value, "wrap around" to most negative value, end up at -1 -2,147,483,648 -1 0 2,147,483,647 • 0x8000000 0xfffffff0x0 0x7ffffff	 Two's Complement and Sign Extension normally, pad with 0s when extending to larger size 0x8b byte (139) becomes 0x000008b int (139) but that would change value for negative 2's comp: 0xff byte (-1) should not be 0x000000ff int (255) so: pad with Fs with negative numbers in 2's comp: 0xff byte (-1) becomes 0xfffffff int (-1) in binary: padding with 1, not 0 reminder: why do all this? add/subtract works without checking if number positive or negative 	Implementing if-then-else (s6-if) if (a>b) max = a; else max = b; • General form • in Java and C - if <condition> <then-statements> else <else-statements> • pseudo-code template temp_c = not <condition> goto then if (temp_c==0) else: <else-statements> goto end_if then: <then-statements> end_if:</then-statements></else-statements></condition></else-statements></then-statements></condition>

 • This example • pseudo-code template • temp_a=a temp_b=b temp_c-temp_atemp_b goto then if (temp_c>0) else: temp_max=temp_a end_if: max=temp_max • assembly code 	Static Procedure Calls	 Code Examples (s6-static-call) public class A { static void ping 0 { public class Foo { static void foo 0 { A.ping 0; } } Java • D a method is a sub-routine with a name, arguments and local scope • method invocation causes the sub-routine to run with values bound to arguments and with a possible result bound to the invocation 	Balance of the proceeding o
 Implementing Procedure Return return address is the address the procedure jumps to when it completes the address of the instruction following the call that caused it to run a dynamic property of the program questions how does procedure know the return address? how does it jump to a dynamic address? 	 saving the return address only the caller knows the address so the caller must save it before it makes the call caller will save the return address in r6 there is a bit of a problem here if the callee makes a procedure call, more later we need a new instruction to read the PC we'll call it gpc jumping back to return address we need new instruction to jump to an address stored in a register callee can assume return address is in r6 	ISA for Static Control Flow (part 2) • New requirements • read the value of the PC • jump to a dynamically determined target address • Complete new set of instructions <u>Name semantics Assembly Machine</u> <u>branch if equal pc ← (a==pc+pp*2) if r[c]==0 beq a 9cpp</u> <u>branch if greater pc ← (a==pc+pp*2) if r[c]>0 bgt a acpp</u> <u>jump pc ← a (a specified as label) j a b aaaaaaaaa</u> get pc r[d] ← pc + (o==p*2) gpc So,rd 6fpd indirect jump pc ← r[t] + (o==pp*2) j o(rt) ctpp • jump assembly uses label, not direct hex number	void foo 0 { ping 0; foo: gpc \$6, r6 # r6 = pc of next instruction j ping # goto ping 0