
CPSC 213
Introduction to Computer Systems

Unit 1b

Static Scalars and Arrays
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Reading

‣Companion
•  2.2.3, 2.3, 2.4.1-2.4.3, 2.6

‣Textbook
• Array Allocation and Access

• 1ed: 3.8

• 2ed: 3.8
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The Big Picture

‣Build machine model of execution
• for Java and C programs

• by examining language features

• and deciding how they are implemented by the machine

‣What is required
• design an ISA into which programs can be compiled

• implement the ISA in the hardware simulator

‣Our approach
• examine code snippets that exemplify each language feature in turn

• look at Java and C, pausing to dig deeper when C is different from Java

• design and implement ISA as needed

‣ The simulator is an important tool
• machine execution is hard to visualize without it

• this visualization is really our WHOLE POINT here
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Design Plan
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Examine Java and C Bit by Bit

‣Reading writing and arithmetic on Variables
• static base types (e.g., int, char)

• static and dynamic arrays of base types

• dynamically allocated objects and object references

• object instance variables

• procedure locals and arguments

‣Control flow
• static intra-procedure control flow (e.g., if, for, while)

• static procedure calls

• dynamic control flow and polymorphic dispatch
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Design Tasks

‣Design Instructions for SM213 ISA
• design instructions necessary to implement the languages

• keep hardware simple/fast by adding as few/simple instructions possible

‣Develop Compilation Strategy
• determine how compiler will compile each language feature it sees

• which instructions will it use?

• in what order?

• what can compiler compute statically?

‣Consider Static and Dynamic Phases of Computation
• the static phase of computation (compilation) happens just once

• the dynamic phase (running the program) happens many times

• thus anything the compiler computes, saves execution time later
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The Simple Machine (SM213) ISA

‣Architecture
• Register File 	 	 8, 32-bit general purpose registers

• CPU	 	 	 	 one cycle per instruction (fetch + execute)

• Main Memory	 	 byte addressed, Big Endian integers

‣ Instruction Format
• 2 or 6 byte instructions (each character is a hex digit)

- x-sd, xsd-, xxsd, xsvv, xxvs, or xs-- vvvvvvvv

• where
- x or xx is opcode (unique identifier for this instruction)

- - means unused

- s and d are operands (registers), sometimes left blank with -
- vv and vvvvvvvv are immediate / constant values
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Machine and Assembly Syntax 

‣Machine code
•[ addr: ] x-01 [ vvvvvvvv ] 

- addr:	 	 sets starting address for subsequent instructions

- x-01	 	 hex value of instruction with opcode x and operands 0 and 1

- vvvvvvvv	 hex value of optional extended value part instruction

‣Assembly code
•( [label:] [instruction | directive] [# comment] | )*

-directive	 :: (.pos number) | (.long number)
-instruction	 :: opcode operand+
-operand   :: $literal | reg | offset (reg) | (reg,reg,4) 
- reg    :: r 0..7
- literal         :: number
-offset         :: number
-number   :: decimal | 0x hex
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Register Transfer Language (RTL)

‣Goal
• a simple, convenient pseudo language to describe instruction semantics

• easy to read and write, directly translated to machine steps

‣Syntax
• each line is of the form LHS ← RHS
• LHS is memory or register specification

• RHS is constant, memory, or arithmetic expression on two registers

‣Register and Memory are treated as arrays
• m[a] is memory location at address a
• r[i] is register number i

‣For example
• r[0] ← 10
• r[1] ← m[r[0]]
• r[2] ← r[0] + r[1]

9

Implementing the ISA
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The CPU Implementation

‣ Internal state
• pc	 	 	 address of next instruction to fetch

• instruction	 the value of the current instruction
- insOpCode

- insOp0

- insOp1

- insOp2

- insOpImm

- insOpExt

‣ Operation
• fetch

- read instruction at pc from memory, determine its size and read all of it

- separate the components of the instruction into sub-registers

- set pc to store address of next instruction, sequentially

• execute
- use insOpCode to select operation to perform

- read internal state, memory, and/or register file

- update memory, register file and/or pc
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Static Variables of
Built-In Types
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Static Variables, Built-In Types (S1-global-static)

‣ Java
• static data members are allocated to a class, not an object
• they can store built-in scalar types or references to arrays or objects (references later)

‣ C
• global variables and any other variable declared static
• they can be static scalars, arrays or structs or pointers (pointers later)

public class Foo {
  static int   a;
  static int[] b;   // array is not static, so skip for now
  
  public void foo () {
    a = 0;
  }}

int a;
int b[10];

void foo () {
  a    = 0; 
  b[a] = a;
}
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Static Variable Allocation

‣ Allocation is
• assigning a memory location to store variable’s value

• assigning the variable an address (its name for reading and writing)

‣ Key observation
• global/static variables can exist before program starts and live until after it finishes

‣ Static vs dynamic computation
• compiler allocates variables, giving them a constant address

• no dynamic computation required to allocate the variables, they just exist

int a;
int b[10];

Static Memory Layout

0x1000: value of a
0x2000: value of b[0]
0x2004: value of b[1]
...
0x2024: value of b[9]

int a;
int b[10];

void foo () {
  a    = 0; 
  b[a] = a;
}
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Static Variable Access (scalars)

‣Key Observation
• address of a, b[0], b[1], b[2], ... are constants known to the compiler

‣Use RTL to specify instructions needed for a = 0

a = 0;

b[a] = a;

Generalizing
  * What if it's a = a + 2? or a = b? or a = foo ()?
  * What about reading the value of a?

int a;
int b[10];

void foo () {
  a    = 0; 
  b[a] = a;
}

Static Memory Layout

0x1000: value of a
0x2000: value of b[0]
0x2004: value of b[1]
...
0x2024: value of b[9]
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Question (scalars)

‣When is space for a allocated (when is its address determined)?
• [A] The program locates available space for a when program starts

• [B] The compiler assigns the address when it compiles the program

• [C] The compiler calls the memory to allocate a when it compiles the program

• [D] The compiler generates code to allocate a before the program starts running

• [E] The program locates available space for a when the program starts running

• [F] The program locates available space for a just before calling foo()

a = 0;

b[a] = a;

int a;
int b[10];

void foo () {
  a    = 0; 
  b[a] = a;
}

Static Memory Layout

0x1000: value of a
0x2000: value of b[0]
0x2004: value of b[1]
...
0x2024: value of b[9]
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Static Variable Access (static arrays)

‣Key Observation
• compiler does not know address of b[a]

- unless it can knows the value of a statically, which it could here by looking at a=0, but not in general

‣Array access is computed from base and index
• address of element is base plus offset; offset is index times element size

• the base address (0x2000) and element size (4) are static, the index is dynamic

‣Use RTL to specify instructions for b[a] = a, not knowing a?

a = 0;

b[a] = a;

int a;
int b[10];

void foo () {
  a    = 0; 
  b[a] = a;
}

Static Memory Layout

0x1000: value of a
0x2000: value of b[0]
0x2004: value of b[1]
...
0x2024: value of b[9]
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Designing ISA for Static Variables

‣ Requirements for scalars
• load constant into register

- r[x] ← v

• store value in register into memory at constant address
- m[0x1000] ← r[x]

• load value in memory at constant address into a register
- r[x] ← m[0x1000]

‣ Additional requirements for arrays
• store value in register into memory at address in register*4 plus constant

- m[0x2000+r[x]*4] ← r[y]

• load value in memory at address in register*4 plus constant into register
- r[y] ← m[0x2000+r[x]*4]

‣Generalizing and simplifying we get
• r[x] ← constant

• m[r[x]] ← r[y] and r[y] ← m[r[x]]

• m[r[x] + r[y]*4] ← r[z] and r[z] ← m[r[x] + r[y]*4]

b[a] = a;

a = 0;
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‣The compiler’s semantic translation
• it uses these instructions to compile the program snippet

‣ ISA Specification for these 5 instructions

int a;
int b[10];

void foo () {
  a = 0; 
  b[a] = a;
}

Name Semantics Assembly Machine
load immediate r[d] ← v ld $v, rd 0d-- vvvvvvvv
load base+offset r[d] ← m[r[s]] ld ?(rs), rd 1?sd
load indexed r[d] ← m[r[s]+4*r[i]] ld (rs,ri,4), rd 2sid
store base+offset m[r[d]] ← r[s] st rs, ?(rd) 3s?d
store indexed m[r[d]+4*r[i]] ← r[s] st rs, (rd,ri,4) 4sdi

r[0]           ← 0
r[1]           ← 0x1000
m[r[1]]        ← r[0]

r[2]           ← m[r[1]]
r[3]           ← 0x2000
m[r[3]+r[2]*4] ← r[2]
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‣The compiler’s assembly translation

int a;
int b[10];

void foo () {
  a = 0; 
  b[a] = a;
}

ld $0, r0
ld $0x1000, r1
st r0, (r1)

ld (r1), r2
ld $0x2000, r3
st r2, (r3,r2,4)

int a;
int b[10];

void foo () {
  a = 0; 
  b[a] = a;
}

r[0]           ← 0
r[1]           ← 0x1000
m[r[1]]        ← r[0]

r[2]           ← m[r[1]]
r[3]           ← 0x2000
m[r[3]+r[2]*4] ← r[2]
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‣ If a human wrote this assembly
• list static allocations, use labels for addresses, add comments

ld $0, r0        # r0 = 0
ld $a_data, r1   # r1 = address of a
st r0, (r1)      # a = 0
 
ld (r1), r2      # r2 = a
ld $b_data, r3   # r3 = address of b
st r2, (r3,r2,4) # b[a] = a
  
.pos 0x1000
a_data: 
.long 0          # the variable a

.pos 0x2000
b_data: 
.long 0          # the variable b[0]
.long 0          # the variable b[1]
...
.long 0          # the variable b[9]

int a;
int b[10];

void foo () {
  a = 0; 
  b[a] = a;
}
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‣ In these instructions

‣We have specified 4 addressing modes for operands
• immediate		 constant value stored in instruction

• register		 	 operand is register number, register stores value

• base+offset	 operand in register number
	 	 	 	 register stores memory address of value

• indexed	 	 two register-number operands 
	 	 	 	 store base memory address and index of value

Addressing Modes

Name Semantics Assembly Machine
load immediate r[d] ← v ld $v, rd 0d-- vvvvvvvv
load base+offset r[d] ← m[r[s]] ld ?(rs), rd 1?sd
load indexed r[d] ← m[r[s]+4*r[i]] ld (rs,ri,4), rd 2sid
store base+offset m[r[d]] ← r[s] st rs, ?(rd) 3s?d
store indexed m[r[d]+4*r[i]] ← r[s] st rs, (rd,ri,4) 4sdi
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Basic Arithmetic, Shifting NOP and Halt

‣Arithmetic

‣Shifting NOP and Halt

Name Semantics Assembly Machine
register move r[d] ← r[s] mov rs, rd 60sd
add r[d] ← r[d] + r[s] add rs, rd 61sd
and r[d] ← r[d] & r[s] and rs, rd 62sd
inc r[d] ← r[d] + 1 inc rd 63-d
inc address r[d] ← r[d] + 4 inca rd 64-d
dec r[d] ← r[d] - 1 dec rd 65-d
dec address r[d] ← r[d] - 4 deca rd 66-d
not r[d] ← ~ r[d] not rd 67-d

Name Semantics Assembly Machine
shift left r[d] ← r[d] << S = s shl rd, s

7dSS
shift right r[d] ← r[d] >> S = -s shr rd, s

7dSS

halt halt machine halt f0--
nop do nothing nop ff--
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Global Dynamic Array
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Global Dynamic Array

‣ Java
• array variable stores reference to array allocated dynamically with new statement

‣ C
• array variables can store static arrays or

pointers to arrays allocated dynamically with call to malloc library procedure

public class Foo {
  static int a;
  static int b[] = new int[10];
  
  void foo () {
    b[a]=a;
  }}

int  a;
int* b;

void foo () {
  b = (int*) malloc (10*sizeof(int));
  b[a] = a;
}

# of bytes to allocate
malloc does not assign a type
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How C Arrays are Different from Java

‣ Terminology
• use the term pointer instead of reference; they mean the same thing

‣Declaration
• the type is a pointer to the type of its elements, indicated with a *

‣Allocation
• malloc allocates a block of bytes; no type; no constructor

‣ Type Safety
• any pointer can be type cast to any pointer type

‣Bounds checking
• C performs no array bounds checking

• out-of-bounds access manipulates memory that is not part of array

• this is the major source of virus vulnerabilities in the world today

Question: Can array bounds checking be perform statically?
  * what does this say about a tradeoff that Java and C take differently?
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Static vs Dynamic Arrays

‣Declared and allocated differently, but accessed the same

‣Static allocation
• for static arrays, the compiler allocates the array

• for dynamic arrays, the compiler allocates a pointer

int  a;
int* b;

void foo () {
  b = (int*) malloc (10*sizeof(int));
  b[a] = a;
}

int a;
int b[10];

void foo () {
  b[a] = a;
}

0x2000: value of b[0]
0x2004: value of b[1]
...
0x2024: value of b[9]

0x2000: value of b
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‣Then when the program runs
• the dynamic array is allocated by a call to malloc, say at address 0x3000

• the value of variable b is set to the memory address of this array

‣Generating code to access the array
• for the dynamic array, the compiler generates an additional load for b

0x3000: value of b[0]
0x3004: value of b[1]
...
0x3024: value of b[9]

r[0]           ← 0x1000
r[1]           ← m[r[0]]
r[2]           ← 0x2000
r[3]           ← m[r[2]]
m[r[3]+r[2]*4] ← r[2]

r[0]           ← 0x1000
r[1]           ← m[r[0]]
r[2]           ← 0x2000
m[r[2]+r[1]*4] ← r[1]

load a

load b
b[a]=a

0x2000: value of b[0]
0x2004: value of b[1]
...
0x2024: value of b[9]

0x2000: 0x3000
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‣ In assembly language

‣Comparing static and dynamic arrays
• what is the benefit of static arrays?

• what is the benefit of dynamic arrays?

ld $a_data, r0   # r1 = address of a
ld (r0), r1      # r2 = a
ld $b_data, r2   # r2 = address of b
st r1, (r2,r1,4) # b[a] = a
  
.pos 0x1000
a_data: 
.long 0          # the variable a

.pos 0x2000
b_data: 
.long 0          # the variable b[0]
.long 0          # the variable b[1]
...
.long 0          # the variable b[9]

ld $a_data, r0   # r1 = address of a
ld (r0), r1      # r2 = a
ld $b_data, r2   # r2 = address of b
ld (r2), r3      # r3 = b
st r1, (r3,r1,4) # b[a] = a
  
.pos 0x1000
a_data: 
.long 0          # the variable a

.pos 0x2000
b_data: 
.long 0          # the b

Static Array Dynamic Array
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Pointers in C
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C and Java Arrays and Pointers

‣ In both languages
• an array is a list of items of the same type

• array elements are named by non-negative integers start with 0

• syntax for accessing element i of array b is b[i]
‣ In Java

• variable a stores a pointer to the array

• b[x] = 0  means   m[m[b] + x * sizeof(array-element)] ← 0

‣ In C
• variable a can store a pointer to the array or the array itself

• b[x] = 0  meansm[b + x * sizeof(array-element)] ← 0
   or  m[m[b] + x * sizeof(array-element)] ← 0

• dynamic arrays are just like all other pointers
- stored in TYPE*

- access with either a[x] or *(a+x)
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Example

‣The following two C programs are identical

‣For array access, the compiler would generate this code

• multiplying the index 4 by 4 (size of integer) to compute the array offset

‣So, what does this tell you about pointer arithmetic in C?

int *a;
*(a+4) = 5;

int *a;
a[4] = 5;

r[0]           ← a
r[1]           ← 4
r[2]           ← 5
m[r[0]+4*r[1]] ← r[2]

ld $a, r0
ld $4, r1
ld $5, r2
st r2, (r0,r1,4)

Adding X to a pointer of type Y*, adds X * sizeof(Y)
to the pointer’s memory-address value.
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Pointer Arithmetic in C

‣ Its purpose
• an alternative way to access dynamic arrays to the a[i]

‣ Adding or subtracting an integer index to a pointer
• results in a new pointer of the same type

• value of the pointer is offset by index times size of pointer’s referent

• for example
- adding 3 to an int* yields a pointer value 12 larger than the original

‣ Subtracting two pointers of the same type
• results in an integer

• gives number of referent-type elements between the two pointers

• for example
- (& a[7]) - (& a[2])) == 5 == (a+7) - (a+2)

‣ other operators
• & X		 the address of X

• * X	 	 the value X points to 
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Question (from S3-C-pointer-math.c)

‣What is the equivalent Java statement to
• [A] c[0] = c[3];

• [B] c[3] = c[6];

• [C] there is no typesafe equivalent

• [D] not valid, because you can’t take the address of a static in Java

int *c;

void foo () {
  // ...
  c = (int *) malloc (10*sizeof(int));
  // ...
  c = &c[3];
  *c = *&c[3];
  // ...
}
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Looking more closely

c = &c[3];
*c = *&c[3];

r[0]    ← 0x2000         # r[0] = &c
r[1]    ← m[r[0]]        # r[1] = c
r[2]    ← 12             # r[2] = 3 * sizeof(int)
r[2]    ← r[2]+r[1]      # r[2] = c + 3
m[r[0]] ← r[2]           # c    = c + 3

r[3]    ← 3              # r[3] = 3
r[4]    ← m[r[2]+4*r[3]] # r[4] = c[3]
m[r[2]] ← r[4]           # c[0] = c[3]

0x2000: 0x3000 0x3000: 0
0x3004: 1
0x3008: 2
0x300c: 3
0x3010: 4
0x3014: 5
0x3018: 6
0x301c: 7
0x3020: 8

Before

0x2000: 0x300c 0x3000: 0
0x3004: 1
0x3008: 2
0x300c: 6
0x3010: 4
0x3014: 5
0x3018: 6
0x301c: 7
0x3020: 8

After

c[0] = c[3]
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‣And in assembly language

r[0]    ← 0x2000         # r[0] = &c
r[1]    ← m[r[0]]        # r[1] = c
r[2]    ← 12             # r[2] = 3 * sizeof(int)
r[2]    ← r[2]+r[1]      # r[2] = c + 3
m[r[0]] ← r[2]           # c    = c + 3

r[3]    ← 3              # r[3] = 3
r[4]    ← m[r[2]+4*r[3]] # r[4] = c[3]
m[r[2]] ← r[4]           # c[0] = c[3]

ld $0x2000, r0            # r0 = &c
ld (r0), r1               # r1 = c
ld $12, r2                # r2 = 3*sizeof(int)
add r1, r2                # r2 = c+3
st r2, (r0)               # c  = c+3

ld $3, r3                 # r3   = 3
ld (r2,r3,4), r4          # r4   = c[3]
st r4, (r2)               # c[0] = c[3]
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Summary: Static Scalar and Array Variables

‣Static variables
• the compiler knows the address (memory location) of variable

‣Static scalars and arrays
• the compiler knows the address of the scalar value or array

‣Dynamic arrays
• the compiler does not know the address the array

‣What C does that Java doesn’t
• static arrays

• arrays can be accessed using pointer dereferencing operator

• arithmetic on pointers

‣What Java does that C doesn’t
• typesafe dynamic allocation

• automatic array-bounds checking
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