
CPSC 213
Introduction to Computer Systems

Unit 1a

Numbers and Memory

1

The Big Picture

‣Build machine model of execution
• for Java and C programs

• by examining language features

• and deciding how they are implemented by the machine

‣What is required
• design an ISA into which programs can be compiled

• implement the ISA in the hardware simulator

‣Our approach
• examine code snippets that exemplify each language feature in turn

• look at Java and C, pausing to dig deeper when C is different from Java

• design and implement ISA as needed

‣ The simulator is an important tool
• machine execution is hard to visualize without it

• this visualization is really our WHOLE POINT here

2

In the Lab ...

‣write a C program to determine Endianness
• prints “Little Endian” or “Big Endian”

• get comfortable with Unix command line and tools (important)

‣compile and run this program on two architectures
• IA32: lin01.ugrad.cs.ubc.ca

• Sparc: galiano.ugrad.cs.ubc.ca

• you can tell what type of arch you are on
- % uname -a

‣SimpleMachine simulator
• load code into Eclipse and get it to build

• write and test MainMemory.java

• additional material available on the web page at lab time

3

The Main Memory Class

‣The SM213 simulator has two main classes
• CPU implements the fetch-execute cycle

• MainMemory implements memory

‣The first step in building our processor
• implement 6 main internal methods of MainMemory

CPU
 fetch
 execute

MainMemory
 isAligned
 bytesToInteger
 integerToBytes
 get
 set

read
readInteger

write
writeInteger

4

The Code You Will Implement

/**
 * Determine whether an address is aligned to specified length.
 * @param address memory address
 * @param length byte length
 * @return true iff address is aligned to length
 */
protected boolean isAccessAligned (int address, int length) {
 return false;
}

5

/**
 * Convert an sequence of four bytes into a Big Endian integer.
 * @param byteAtAddrPlus0 value of byte with lowest memory address
 * @param byteAtAddrPlus1 value of byte at base address plus 1
 * @param byteAtAddrPlus2 value of byte at base address plus 2
 * @param byteAtAddrPlus3 value of byte at base address plus 3
 * @return Big Endian integer formed by these four bytes
 */
public int bytesToInteger (UnsignedByte byteAtAddrPlus0,
 UnsignedByte byteAtAddrPlus1,
 UnsignedByte byteAtAddrPlus2,
 UnsignedByte byteAtAddrPlus3) {
 return 0;
}

/**
 * Convert a Big Endian integer into an array of 4 bytes
 * @param i an Big Endian integer
 * @return an array of UnsignedByte
 */
public UnsignedByte[] integerToBytes (int i) {
 return null;
}

6

**
 * Fetch a sequence of bytes from memory.
 * @param address address of the first byte to fetch
 * @param length number of bytes to fetch
 * @return an array of UnsignedByte
 */
protected UnsignedByte[] get (int address, int length) throws ... {
 UnsignedByte[] ub = new UnsignedByte [length];
 ub[0] = new UnsignedByte (0); // with appropriate value
 // repeat to ub[length-1] ...
 return ub;
}

/**
 * Store a sequence of bytes into memory.
 * @param address address of the first memory byte
 * @param value an array of UnsignedByte values
 * @throws InvalidAddressException if any address is invalid
 */
protected void set (int address, UnsignedByte[] value) throws ... {
 byte b[] = new byte [value.length];
 for (int i=0; i<value.length; i++)
 b[i] = (byte) value[i].value();
 // write b into memory ...
}

7

Reading

‣Companion
• previous module: 1, 2.1

• new: 2.2 (focus on 2.2.2 for this week)

‣Textbook
• A Historical Perspective, Machine-Level Code, Data Formats, "New to C",

Data Alignment.

• 2ed: 3.1-3.2.1, 3.3, "New to C" sidebar of 3.4, 3.9.3
- (skip 3.2.2 and 3.2.3)

• 1ed: 3.1-3.2.1, 3.3, "New to C" sidebar of 3.4, 3.10

8

Numbers in Memory

9

Binary, Hex, and Decimal Refresher

‣Hexadecimal notation
• number starts with “0x” , each digit is base 16 not

base 10

• e.g.: 0x2a3 = 2x162 + 10x161 + 3x160

• a convenient way to describe numbers when
binary format is important

• each hex digit (hexit) is stored by 4 bits:
 (0|1)x8 + (0|1)x4 + (0|1)x2 + (0|1)x1

‣Examples
• 0x10 in binary? in decimal?

• 0x2e in binary? in decimal?

• 1101 1000 1001 0110 in hex? in decimal?

• 102 in binary? in hex?

B

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

H

0

1

2

3

4

5

6

7

8

9

a

b

c

d

e

f

D

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

10

Memory and Integers

‣Memory is byte addressed
• every byte of memory has a unique address, numbered from

0 to N

• N is huge: billions is common these days (2-16 GB)

‣ Integers can be declared at different sizes
• byte is 1 byte, 8 bits, 2 hexits

• short is 2 bytes, 16 bits, 4 hexits

• int or word or long is 4 bytes, 32 bits, 8 hexits

• long long is 8 bytes, 64 bits, 16 hexits

‣ Integers in memory
• reading or writing an integer requires specifying a range of

byte addresses

0

1

2

3

4

5

6

7

8

9

.

.

.

N

.

.

.

11

Making Integers from Bytes

‣Our first architectural decisions
• assembling memory bytes into integer registers

‣Consider 4-byte memory word and 32-bit register
• it has memory addresses i, i+1, i+2, and i+3

• we’ll just say it's “at address i and is 4 bytes long”

• e.g., the word at address 4 is in bytes 4, 5, 6 and 7.

‣Big or Little Endian (end means where start from, not finish)
• we could start with the BIG END of the number (most everyone but Intel)

• or we could start with the LITTLE END (Intel x86, some others)

i

231 to 224

i + 1

223 to 216

i + 2

215 to 28

i + 3

27 to 20

i + 3

231 to 224

i + 2

223 to 216

i + 1

215 to 28

i

27 to 20

i

i + 1

i + 2

i + 3

...

...

✔

Memory

Register bits

Register bits

12

‣Aligned or Unaligned Addresses
• we could allow any number to address a multi-byte integer

• or we could require that addresses be aligned to integer-size boundary

• Power-of-Two Aligned Addresses Simplify Hardware
- smaller things always fit complete inside of bigger things

- byte address from integer address: divide by power to two, which is just shifting bits

j / 2k == j >> k (j shifted k bits to right)

word contains exactly two
complete shorts

address modulo chunk-size is always zero

✔

✗
* disallowed on many
 architectures
* allowed on Intel,
 but slower

✗ ✗ ✗ * SM213 alignment:
 4-byte words

13

Computing Alignment

‣ boolean align(number, size)
• does a number fit nicely for a particular size (in bytes)?

‣ divide number n by size s (in bytes), aligned if no
remainder
• easy if number is decimal

• otherwise convert from hex or binary to decimal

‣ check if n mod s = 0
• mod notation usually '%'. same as division, of course...

‣ check if certain number of final bits are all 0
• pattern?

- last 1 digit for 2-byte short

- last 2 digits for 4-byte world

- last 3 digits for 8-byte longlong

• last k digits, where 2k =s (size in bytes)

• easy if number is hex: convert to binary and check

B

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

H

0

1

2

3

4

5

6

7

8

9

a

b

c

d

e

f

D

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

14

Question

‣Which of the following statement (s) are true
• [A]	 6 == 1102 is aligned for addressing a short

• [B]	 6 == 1102 is aligned for addressing a long

• [C]	 20 == 101002 is aligned for addressing a long

• [D]	 20 == 101002 is aligned for addressing a long long (i.e., 8-byte int)

15

Interlude
A Quick C Primer

16

‣source files
• .c	 is source file

• .h	 is header file

‣ including headers in source
• #include <stdio.h>

‣printing
• printf("blah blah\n");

‣compile and run
• gcc -o foo foo.c
• ./foo

• do this at a Unix shell prompt
(Linux, Mac Terminal, Sparc,
Cygwin on Windows)

Java Syntax... vs. C Syntax

‣source files
• .java is source file

‣ including packages in source
• import java.io.*

‣printing
• System.out.println("blah blah");

‣compile and run
• javac foo.java
• java foo

17

import java.io.*;

public class HelloWorld {

 public static void main (String[] args) {

 System.out.println("Hello world");

 }

}

Java Hello World...

#include <stdio.h>

main() {

 printf("Hello world\n");

}

C Hello World...

18

Java and C: Similarities

‣declaration, assignment
• int a = 4;

‣control flow (often)
• if (a == 4) ... else ...

• for (int i = 0; i < 10; i++) {...}

• while (i < 10) {...}

‣casting
int a;

long b;

a = (int) b;

19

‣pointers: addresses in memory
• locations are first-class citizens in C

• can go back and forth between location and value!

‣pointer declaration: <type>*
• int* b; // b is a POINTER to an INT

‣getting address of object: &
• int a; // a is an INT
• int* b = &a; // b is a pointer to a

‣de-referencing pointer: *
• a = 10; // assign the value 10 to a
• *b = 10; // assign the value 10 to a

‣ type casting is not typesafe	
• char a[4]; // a 4 byte array
• *((int*) a) = 1; // treat those four bytes as an INT

New in C: Pointers

0x00000000

0x00000001

0x00000002

0x00000003

0x00000004

0x00000005

0x00000006

0x3e47ad40

0x3e47ad41

0x3e47ad42

0xffffffff

.

.

.

.

.

.

20

Back to Numbers ...

21

Determining Endianness of a Computer

#include <stdio.h>

int main () {
 char a[4];

 ((int)a) = 1;

 printf("a[0]=%d a[1]=%d a[2]=%d a[3]=%d\n",a[0],a[1],a[2],a[3]);
}

22

‣Which of the following statements are true
• [A]	 memory stores Big Endian integers

• [B]	 memory stores bytes interpreted by the CPU as Big Endian integers

• [C]	 Neither

• [D]
 I don’t know

23

‣Which of these are true
• [A]	 The Java constants 16 and 0x10 are exactly the same integer

• [B]	 16 and 0x10 are different integers

• [C]	 Neither

• [D]	 I don't know

24

‣What is the Big-Endian integer value at address 4 below?
• [A] 		 0x1c04b673
• [B] 		 0xc1406b37
• [C] 	 0x73b6041c
• [D] 		 0x376b40c1
• [E]	 	 none of these

• [F]

 I don’t know

0x0: 0xfe

0x1: 0x32

0x2: 0x87

0x3: 0x9a

0x4: 0x73

0x5: 0xb6

0x6: 0x04

0x7: 0x1c

Memory

25

‣What is the value of i after this Java statement executes?

 int i = (byte)(0x8b) << 16;

• [A]	 	 0x8b
• [B]	 	 0x0000008b
• [C]	 	 0x008b0000
• [D]	 	 0xff8b0000
• [E]	 	 None of these

• [F]

 I don’t know

26

‣What is the value of i after this Java statement executes?

	 i = 0xff8b0000 & 0x00ff0000;
• [A]	 0xffff0000
• [B]	 0xff8b0000
• [C]	 0x008b0000
• [D]
 I don’t know

27

