Introduction to Computer Systems

Unit T1a
Numbers and Memory

The Big Picture

Build machine model of execution

e for Java and C programs

* by examining language features

* and deciding how they are implemented by the machine

What is required

* design an ISA into which programs can be compiled
* implement the ISA in the hardware simulator

Our approach

e examine code shippets that exemplify each language feature in turn
¢ look at Java and C, pausing to dig deeper when C is different from Java
e design and implement ISA as needed

The simulator is an important tool
* machine execution is hard to visualize without it
e this visualization is really our WHOLE POINT here

In the Lab ...

write a C program to determine Endianness
e prints “Little Endian” or “Big Endian”
* get comfortable with Unix command line and tools (important)

compile and run this program on two architectures
*|A32: lin0O1.ugrad.cs.ubc.ca
e Sparc: galiano.ugrad.cs.ubc.ca
* you can tell what type of arch you are on
- % uname -a
SimpleMachine simulator
* load code into Eclipse and get it to build
e write and test MainMemory.java
e additional material available on the web page at lab time

The Main Memory Class

The SM213 simulator has two main classes
* CPU implements the fetch-execute cycle

* MainMemory implements memory

The first step in building our processor

* implement 6 main internal methods of MainMemory

CPU

fetch read
execute

MainMemory
iIsAligned
readinteger bytesTolnteger
write integerToBytes
writelnteger | e[=i:
set

The Code You Will Implement

/7’:»’:

* Determine whether an address is aligned to specified length.

* @param address memory address

* @param length byte length

* @return true iff address is aligned to length

:‘:/

protected boolean iSAccessAligned (int address, int length) {
return false;

}

/*k‘k

* Convert an sequence of four bytes into a Big Endian integer.

* @param byteAtAddrPlusO value of byte with lowest memory address

* @param byteAtAddrPlus1 value of byte at base address plus 1

* @param byteAtAddrPlus2 value of byte at base address plus 2

* @param byteAtAddrPlus3 value of byte at base address plus 3

* @return Big Endian integer formed by these four bytes

*/

public int bytesTolnteger (UnsignedByte byteAtAddrPlusO,
UnsignedByte byteAtAddrPlus1,
UnsignedByte byteAtAddrPlus2,
UnsignedByte byteAtAddrPlus3) {

return O;

}
/7’: *

* Convert a Big Endian integer into an array of 4 bytes
* @param i an Big Endian integer

* @return an array of UnsignedByte

7':/

public UnsignedByte[] integerToBytes (int i) {
return null;

}

* Fetch a sequence of bytes from memory.

* @param address address of the first byte to fetch

* @param length number of bytes to fetch

* @return an array of UnsignedByte

*/

protected UnsignedByte[] get (int address, int length) throws ... {
UnsignedByte[] ub = new UnsignedByte [length];
ub[0] = new UnsignedByte (0); // with appropriate value
/| repeat to ub[length-1] ...

return ub;
}
/7’:7’:
* Store a sequence of bytes into memory.
* @param address address of the first memory byte
* @param value an array of UnsignedByte values

* @throws InvalidAddressException if any address is invalid
*/
protected void set (int address, UnsignedByte[] value) throws ... {
byte b[] = new byte [value.length];
for (int i=0; i<value.length; i++)
b[i] = (byte) valuel[i].value();
/] write b into memory ...

}

Reading

Companion
* previous module: 1, 2.1
* new: 2.2 (focus on 2.2.2 for this week)

Textbook

* A Historical Perspective, Machine-Level Code, Data Formats, "New to C",
Data Alignment.

*2ed: 3.1-3.2.1, 3.3, "New to C" sidebar of 3.4, 3.9.3
- (skip 3.2.2 and 3.2.3)

*ied: 3.1-3.2.1, 3.3, "New to C" sidebar of 3.4, 3.10

Binary, Hex, and Decimal Refresher

B H D
Hexadecimal notation 0000 00
0001 1 1
number starts with “Ox” , each digit is base 16 not 0010 2 5
base 10
0011 3 3
e.g.: 0x2a3 = 2x162 + 10x16" + 3x16° 0100 4 4
a convenient way to describe numbers when 0101 5 5
i binary format is important 0110 6 6
Num be rs in Memo ry each hex digit (hexit) is stored by 4 bits: 0111 7 7
(0]1)x8 + (0[1)x4 + (O[1)x2 + (O]1)x1 1000 8 8
Examples 10019 9
0x10 in binary? in decimal? 181(1) z 1(1)
Ox2e in binary? in decimal? 1100 ¢ 12
1101 1000 1001 0110 in hex? in decimal? 1101 d 13
102 in binary? in hex? 1110 e 14
1111 f 15
Memory and Integers Making Integers from Bytes
Memory

Memory is byte addressed

every byte of memory has a unique address, numbered from
OtoN

N is huge: billions is common these days (2-16 GB)
Integers can be declared at different sizes
byte is 1 byte, 8 bits, 2 hexits
short is 2 bytes, 16 bits, 4 hexits
int or word or long is 4 bytes, 32 bits, 8 hexits
long long is 8 bytes, 64 bits, 16 hexits
Integers in memory

reading or writing an integer requires specifying a range of
byte addresses

O 60 N OO vl h W N R O

11

Our first architectural decisions

assembling memory bytes into integer registers

Consider 4-byte memory word and 32-bit register
it has memory addresses i, i+1, i+2, and i+3
we’ll just say it's “at address i and is 4 bytes long”
e.g., the word at address 4 is in bytes 4, 5, 6 and 7.

i+ 1

i+ 2

gadn

i+ 3

Big or Little Endian (end means where start from, not finish)
we could start with the BIG END of the number (most everyone but Intelz

| i || i+ 1 || i+ 2 || i+ 3 |

23110 224 022319216 92154928 271920 Register bits

or we could start with the LITTLE END (Intel x86, some others)

| i+ 3 || i+ 2 || i+ 1 || i |

23119 024 02315216 921549928 975 20 Register bits

Aligned or Unaligned Addresses

Computing Alignment

* we could allow any number to address a multi-byte integer B H D
E X boolean align(number, size) 0000 0 0
E * disallowed on many * does a number fit nicely for a particular size (in bytes)? 0001 1 1
E architectures 0010 2 2
* allowed on Intel,
E but slower L.) . . . 0011 3 3
: : : : divide number n by size s (in bytes), aligned if no
* or we could require that addresses be aligned to integer-size boundary . 0100 4 4
remainder
: . . 0101 5 5
e easy if number is decimal
. . . 0110 6 6
* otherwise convert from hex or binary to decimal
*SM213 allgnment _ 0111 7 7
g 4-byte words checkifnmods=0 1000 8 8
address modulo chunk-size is always zero * mod notation usually '%'. same as division, of course... 1001 9 9
* Power-of-Two Aligned Addresses Simplify Hardware check if certain number of final bits are all 0 1010 a 10
- smaller things always fit complete inside of bigger things * pattern? 1011 b 11
E E === word contains exactly two - last 1 digit for 2-byte short 1100 C 12
E Complete shorts - last 2 digits for 4-byte world 1101 d 13
- byte address from integer address: divide by power to two, which is just shifting bits - last 3 digits for 8-byte longlong 1110 e 14
_) _ o _ _ * last k digits, where 2k =s (size in bytes) 1111 f 15
jr2k==j>>k (shifted k bits to right) e easy if number is hex: convert to binary and check
13 14
Question

Which of the following statement (s) are true

*[A] 6 == 1102 is aligned for addressing a short

*[B] 6 == 1102 is aligned for addressing a long

*[C] 20 == 101002 is aligned for addressing a long

*[D] 20 == 101002 is aligned for addressing a long long (i.e., 8-byte int)

15

Interlude

A Quick C Primer

Java Syntax...

source files

Jjava is source file

including packages in source
import java.io.”
printing

System.out.printin("blah blah");
compile and run

javac foo.java
java foo

vs. C Syntax

source files
.Cc is source file
.h is header file

including headers in source
#include <stdio.h>

printing
printf("blah blah\n");

compile and run

gcc -o foo foo.c
./foo

do this at a Unix shell prompt
(Linux, Mac Terminal, Sparc,
Cygwin on Windows)

17

Java Hello World...

import java.io.¥;
public class HelloWorld {

public static void main (String[] args) {

System.out.println("Hello world");
}
}

C Hello World...

#include <stdio.h>

main() {
printf("Hello world\n");

Java and C: Similarities

declaration, assignment
inta=4;

control flow (often)
if(@==4) ... else ...

for (inti=0;i<10;i++) {...}
while (i < 10) {...}

casting

int a;

long b;

a = (int) b;

19

New in C: Pointers

pointers: addresses in memory

locations are first-class citizens in C

can go back and forth between location and value!

pointer declaration: <type>*
int* b; // bis a POINTER to an INT

getting address of object: &

int a; // ais an INT

int* b = &a; // b is a pointer to a
de-referencing pointer: *

a =10; // assign the value 10 to a

*b = 10;
type casting is not typesafe

char a[4];
((int) @) = 1;

// assign the value 10 to a

/] a 4 byte array

// treat those four bytes as an INT

0x00000000
0x00000001
0x00000002
0x00000003
0x00000004
0x00000005
0x00000006

0x3e47ad40
Ox3e47ad41
Ox3e4d47ad4?2

OXFFFFFFFF

20

Back to Numbers ...

21

Determining Endianness of a Computer

#include <stdio.h>

int main () {
char a[4];

*((int¥)a) = 1;

printf("a[0]=%d a[1]=%d a[2]=%d a[3]=%d\n",a[0],a[1],a[2],a[3]);
}

22

Which of the following statements are true

*[A] memory stores Big Endian integers

¢ [B] memory stores bytes interpreted by the CPU as Big Endian integers
¢ [C] Neither

¢ [D] I don’t know

23

Which of these are true

*[A] The Java constants 16 and 0x10 are exactly the same integer
*[B] 16 and 0x10 are different integers

* [C] Neither

¢ [D] I don't know

24

What is the Big-Endian integer value at address 4 below? What is the value of i after this Java statement executes?
Al 0x1c04b673 int i = (byte)(0x8b) << 16;

[B] @xcl406b37 Memory
[C] 0x73b6@41c 0x0: Oxfe A oxsb
D] Ox376b40cl 0x1: 0x32
[E] none of these 0x2: 0x87 {21 Zigggsgg;;
[F] | don’t know 0x3: 0x9a
[D] Oxff8b0000o
o ox73 [E] None of these
x5 0xb6 [F] | don’t know
0x6: 0x04
Ox7: Ox1c

25

What is the value of i after this Java statement executes?

i = Oxff8b0000 & 0x00ffO000;
[A] Oxffff0000
[B] Oxff8b0000
[C] 0x008b0000O
[D] | don’t know

27

