
Lecture Notes Companion
CPSC 213

2nd Edition DRAFT Oct28

Mike Feeley
University of British Columbia

February 13, 2012

2

Contents

1 Introduction to the Computer Systems 7

1.1 Java and C . 8

1.2 The Compiler . 8

2 Execution of a Program 9

2.1 The Plan . 9

2.2 Introduction to a Simple CPU . 10

2.2.1 The CPU . 10

2.2.2 The Memory . 12

2.2.3 The Anatomy of a Cycle . 14

2.3 Instruction Set Architectures . 16

2.3.1 Simple Machine ISA Constraints . 16

2.3.2 Instruction Set Styles (RISC vs CISC) . 16

2.3.3 Types of Opcodes . 17

2.3.4 Addressing Modes . 18

2.3.5 Assembly Language . 18

2.3.6 The SM213 ISA . 20

2.4 Variables . 20

2.4.1 Classifying Variables . 20

2.4.2 SM213 Instructions for Accessing Variables . 21

2.4.3 Static Variables . 21

2.4.4 Dynamic Arrays . 24

2.4.5 Instance Variables . 26

2.4.6 Java References and C Pointers . 32

3

2.5 Dynamic Allocation and Deallocation . 32

2.5.1 Pointers and References . 32

2.5.2 Allocating and Deallocating Dynamic Objects . 32

2.5.3 Type Safety and Explicit Deallocation . 32

2.5.4 The Dangling Pointer Problem and Other Bugs With Using Pointers in C 33

2.5.5 Memory Leaks . 33

2.5.6 Java Reference Objects . 34

2.5.7 Garbage Collection . 34

2.6 ALU Instructions . 34

2.6.1 SM213 Instructions for Doing Math . 34

2.7 Control Flow . 35

2.7.1 SM213 Instructions for Static Control Flow . 35

2.7.2 for loops . 35

2.7.3 if statements . 38

2.7.4 SM213 Instructions for Dynamic Control Flow . 40

2.7.5 Static Method Invocation . 40

2.7.6 Method Return . 41

2.7.7 Dynamic Method Invocation . 42

2.7.8 Switch Statements . 46

2.8 Method Scope: Local Variables, Method Arguments and the Stack 48

2.8.1 Local Scopes and the Runtime Stack . 49

2.8.2 Saving the Return Address . 51

2.8.3 Arguments and the Return Value . 51

2.8.4 Arguments and Local Variables Together . 54

2.8.5 The First Stack Frame . 55

3 Talking to I/O Devices 59

4 Virtual Processors 61

5 Virtual Memory 63

5.1 Translation . 63

5.2 Protection . 64

4

5.3 Demand Paging . 64

6 Synchronization 67

6.1 Implementing Synchronization . 67

6.1.1 A Simple and Broken Spinlock . 67

6.1.2 Test-and-Set Spinlocks . 68

6.1.3 Implementing Blocking Locks . 69

A Outline and Reading List 71

B Installing the Simple Machine in Eclipse 73

C SM213 Instruction Set Architecture 77

5

6

Chapter 1

Introduction to the Computer Systems

A computer system consists of computing hardware, system software and application programs. A CPU, main memory
and a set of I/O devices (e.g., disk, network and GPU) make up the hardware. The system software includes an
operating system, library software (sometimes called middleware) and compilers that translate programs from high-
level languages to machine instructions that are executed by the CPU.

This course gives you an introduction to the computer system. Entering this course you know how to write programs
in Java and maybe a few other languages such as Scheme, Python, C or C++. You are starting to get pretty good at
this. In 110 and 210 (or 111 and 211) you developed a mental model of what a program is and what happens when it
runs. To be a great programer, it is essential that you have this model deeply rooted in your brain. The model provides
the cognitive framework for design, implementation, debugging and program understanding.

The goal of 213, and its companion course 313, is to extend this model to include the system context in which your
program executes. Leaving 213 you will have a deeper and more realistic understanding of what happens when your
program runs. You will be able to cut through the layers of abstraction between the program you write and the
computation it actually performs. This understanding will help you to write better programs and to tackle harder
problems. You will see that solving hard problems requires assessing a complex set of tradeoffs in an environment
where important decisions must be made with incomplete information and where there is rarely a single right answer
that works all of the time.

This course is divided into three main sections. In the first section we examine the execution of a single program.
We compare Java and C and see how these high-level languages are translated into a language the CPU understands.
We develop a CPU Instruction Set Architecture (ISA) step by step, adding instructions as needed to implement each
feature of Java and C. You then build a processor that implements this instruction set using a simulator written in Java
and you run various small program snippets on your processor to see what happens as they execute.

In the second section we extend this single-program execution model to an environment where multiple programs run
together and where they interact with I/O devices and each other. This refined model requires additional hardware
features and an extensive set of software abstractions implemented by the operating system. We add an ability for
the CPU to communicate with I/O devices. We evolve the basic execution model to virtualize the CPU and memory.
We see how virtual processors and virtual memory are implemented using a combination of hardware and operating
system software. We see how hardware and these software abstractions are used to encapsulate applications and the
operating system. We see how encapsulated components communicate with each other using protected procedure calls
and message passing IPC.

The final section extends the execution model to a world where things can happen at the same time. We examine
the use of shared memory to communicate among concurrent threads. We see how basic hardware synchronization is
implemented and how higher-level, blocking synchronization is built from these primitives and the virtual processor

7

abstraction. We see how to use these of concurrency-control mechanisms and learn about their potential pitfalls such
as data races and deadlock.

1.1 Java and C

This course uses two high-level programming languages. One that you know and are in the process of become an
expert in — Java — and a language is likely new to you, the main language of system programming — C. Much of the
programming you will do in this course is in Java — an auxiliary goal of this course is to reinforce your programming
skills developed in 110 and 210 (or 111 and 211). But, you will also learn to program in C.

Leaving 213 you will understand how to translate the key features of Java into C. You will be able to compare the two
languages to describe the key differences between them and to explain their relative strengths and weaknesses. You
will be able to write programs in C.

The goal of 213 is not to make you an expert C programmer. However, the best way to become an expert C programmer
is to become an expert Java programmer, to know how to translate key Java features into C, and to practice writing and
debugging C programs. Together 110, 210, 213 and the rest of the curriculum tackle the first two of these goals. 221
gives you some experience with C++. 415 gives you considerable practice writing C programs.

Java and a similar language from Microsoft called C# are interpreted languages. This means that their compilers
translate programs into instructions of a virtual machine that is implemented in software. In the case of Java, the
program that executes programs is called the Java Virtual Machine. For other languages such as C and C++, the
compiler translates programs into instructions that are directly executed by machine hardware. The focus of 213 is to
understand execution in hardware and with system software. We will thus think about Java execution by looking at
the C equivalent of those programs and the execution of these programs in the machine.

1.2 The Compiler

The compiler is a program that translates a program written in a high-level language into a sequence of instructions a
machine can execute. In the case of Java and C#, the machine is a virtual machine implemented by software. In the
case of C, C++ and many other languages, the machine is implemented by hardware.

A key issue we’ll investigate in this course is to distinguish static information from dynamic information. We define
anything that the compiler can know when it is compiling a program to be static and things that can only be know while
the program is running to be dynamic. For example, some variables are static and others dynamic. The compiler knows
the address of static variables and thus can hardcode the address of these variables in the instructions it generates. The
compiler does not know the address of dynamic variables and so the code it generates for access to these variables first
loads their from memory.

8

Chapter 2

Execution of a Program

2.1 The Plan

At the end of this section, you should be able to do the following.

1. You will be able to explain how a real machine executes a C program. You will be able to identify the key features
a machine required to execute a program. You will then be able to explain how each of the key components of
the C language are implemented by these machine capabilities.

2. You will be able to translate a simple Java program in to a C program, to the extent possible given the differences
between the languages.

3. You will be able to translate a simple snippet of a C program into machine instructions for a simple computer.

4. You will be able to write and debug simple C programs.

5. You will be able to describe the differences between the two languages and to compare their relative strengths
and weaknesses.

6. You will be able to describe the key features of this simple computer and explain how each of its machine
instructions uses these features to form a simple computation. You will see that each of these instructions is
simple enough that it could be implemented by a combination circuit.

Our strategy will be to examine the execution of simple snippets of a program in a simple machine (called the Simple
Machine). The course defines the basic characteristics of the machine and its instruction set, SM213. The course
provides a simulator, written in Java, for running programs written in the SM213 assembly language (or even in its
machine language). The simulator has a powerful GUI designed to allow you to explore the execution of machine-
language programs, debug them, understand them, add comments to them etc.

We examine the execution of a Java program, by taking a program bit by bit and looking at how it is implemented in
the Simple Machine. Each bit of the program is called a snippet. Each snippet exemplifies a single key feature of the
language. We use each snippet to focus on individual concerns for execution in the machine.

We first translate each Java snippet into C and talk about the similarities and differences between the way that Java
and C treat this key idea exemplified by the snippet.

Then, we will work through a design of a set of instructions needed to execute this C program, when translated into
their machine code. And finally, we’ll manually compile the snippet into this instruction set. To simulate the program,

9

you will implement the instructions we design in the Simple Machine simulator. Then you’ll execute the snippet
and similar programs in the simulator. Some of this work will be done together in class, some as group exercises in
the lab and some as individual lab work.

Here are the snippets we examine:

Variables

S1-global-static Static variables for accessing static scalars and static arrays.

S2-global-dyn-array Static variables for accessing dynamic arrays.

S3-C-pointer-math Accessing dynamic objects in C: the & operator and the equivalence of pointer arithmetic
with and array access with [].

S4-instance-var Accessing instance variables (data members) of an object, both static and dynamic.

Control Flow

S5-loop For loop that adds an array of numbers (snippet4b is loop unrolled) .

S6-if If-then-else statement that computes max(a, b).

S7-static-call Invoking a static (class) method with no arguments.

S8-dynamic-call Invoking an method on an object.

S9-switch Switch statement.

Procedure Call Scope

SA-locals Local variables of a method.

SB-args Arguments of a method.

2.2 Introduction to a Simple CPU

A computer consists of several pieces of hardware that work together to execute programs: the central processing
unit (CPU), the main memory, the IO device controllers (e.g., for disks, network), and the display-graphics processor
(GPU). In this chapter we consider a simple computer that consists of only two of these: the CPU and main memory.

2.2.1 The CPU

A CPU consists of combinational circuitry built from transistors, a set of on-chip memories called registers and a
clock.

The Combinational Circuit

Let’s take a step back into your recent history and recall 121. In 121 you learned that finite computation can be
modelled by propositional logic (also called Boolean algebra), which in turn can be implemented by a collection of
logic gates built from transistors (though you don’t know yet what a transistor is or how they implement gates — that
comes in 313). This type of circuit is called a combinational circuit.

Another way to think of a combination circuit is that it can implement any function, but only functions. Recall from
121 that a function is a static mapping between two sets, an input set and an output set. Stated more simply, a function

10

produces an output based only the value of it inputs. So, for any particular input values, the combinational circuit
always gives the same output. For example, computation “a + b” is a function and so it can be implemented by a
combination circuit. A computation that adds the values in an array of integers is only a function if the size of the
input array is fixed. A combination circuit, however, can not add the values of an array if the size can vary (e.g., the
size is an input parameter). To perform this type of computation requires a memory and a clock.

Registers

Adding memories and a clock to a combination circuit yields a sequential circuit. The CPU is a sequential circuit
where the circuit-connected memories are called registers. The inputs to the combination circuit come from registers.
The outputs of the circuit go to the same registers.

Again think back to 121 and your implementation of an adder. The adder is a combination circuit with two multi-bit
inputs, let’s call them A and B, and computes an output S. In most computers, numeric values like these are are 32
bits long. So, let’s say that A, B and S are 32-bit numbers. The input wires of the adder circuit are thus connected to
two 32-bit registers and the output wires are connected to a third of these.

In a CPU this notion of an adder is extended to something called the arithmetic logic unit (ALU). The ALU is a
combination circuit with the same inputs and outputs as the adder, but with a third input F (sometimes also called the
opCode), a number that selects one of several different functions the circuit can compute. For example, F = 3 might
cause the circuit to compute O = A + B, while F = 4 might cause it to compute S = A ∗B.

The Clock

The clock regulates the memories as it ticks. The tick is a precise point on the rising edge (usually) of the clock pulse.
Modern Intel processors typically tick 2 or 3 billion times a second.

To understand what happens when a clock ticks, think of every register as having an input and output wire for every
bit it stores. Normally the memory ignores its inputs and sets its outputs to the values it stores. But, on each clock tick
the memory grabs the current value on each if its input wires, stores those new values and starts presenting them on its
output wires.

Each clock tick starts a new cycle of the processor. On each cycle the new value loaded into the registers provides new
inputs to the combination circuit. This circuit computes a new output based on these values and presents this output to
the input wires of the registers. Once this computation has completed, the clock can tick again. This keeps happening
over and over; on each tick the CPU’s state is transformed one step at a time. Each step is the execution of a single
machine instruction.

The Register File

While we could implement the ALU (and other parts of the CPU) using dedicated registers for its inputs and outputs,
this approach is not ideal when you consider a computation that consists of a series of ALU operations; i.e., a program.

For example, consider a program that computes r = (x + y) ∗ x/y with dedicated registers. The execution of the
machine would be something like this; each line is a separate cycle.

1. Load x into ALUA, y into ALUB , and 3 into ALUF .

2. ALU computes ALUA + ALUB and puts result in ALUO (assuming ALUF = 3 means add).

3. Copy ALUO to ALUA, x into ALUB , and 4 into ALUF (assuming 4 means multiply).

11

4. ALU computes ALUA ∗ALUB and puts result in ALUO.

5. Copy ALUO to ALUA, y into ALUB , and 5 into ALUF (assuming 5 means divide).

6. ALU computes ALUA/ALUB and puts result in ALUO

7. Copy ALUO to r.

Processors instead use a set of registers called the register file in way that any of these registers can be connected to
any of the inputs or outputs of the ALU or other parts of the combinational circuitry.

Now each bit of an ALU input or output is connected to a bit of every register in the register file using a component
called a multiplexer (MUX), another thing you learned about in 121. A multiplexer is a combinational circuit that has
n value inputs and an “selector” input. The selector is a number between 0 and n−1 that picks exactly one of the value
inputs to be connected to the output of the multiplexer. For example, if the selector is 3, then the value of register 3 is
connected to the output of the MUX and thus to the combinational circuit of the ALU. The ALU uses 32-bit input and
output values, so the selector actually connects all 32-bits of the register named by the selector to the corresponding
32-bits of the output.

The ALUA and ALUB are connected to two different register-file MUXes and ALUO is connected to a DECODER
that picks the register to store this output value; each of these is connected to the register file. Each MUX/DECODER
has a selector input that specifies a register for ALUA, ALUB and ALUO. The input of this modified ALU is thus
ALUselA, ALUselB , ALUselO and F : three register numbers and a function number.

The execution of a machine with a register file to compute r = (x + y) ∗ x/y is like this; again each line is a separate
cycle of the machine.

1. Load x into a register, say 0, and y into a register, say 1.

2. Pick a register to store the result, say 2. Load 0 into ALUselA, 1 into ALUselB , and 2 into ALUselO. Load 3
into ALUF . ALU computes sum using values from register file and putting result in register file.

3. Pick a register to store the result, say 3. Load 2 into ALUselA, 0 into ALUselB , 3 into ALUselO, and 4 into
ALUF . ALU computes product using values from register file and putting result in register file.

4. Pick a register to store the result, say 3. Load 3 into ALUselA, 1 into ALUselB , 3 into ALUselO, and 5 into
ALUF . ALU computes quotient using values from register file and putting result in register file. Notice that
register 3 is both an input and an output, which is fine because the new value of register 3 computed by the ALU
waits at the register file until the clock ticks.

5. Copy value in register 3 into r.

The key benefit of this approach is that once the intial values are loaded into registers, then a sequence of ALU
operations can be performed by repeated selecting different registers for inputs and output, repeating steps like 2–4.
If the ALU had dedicated registers, then extra steps are required to move values from inputs to outputs or to and
from main memory where the variables x, y and r are stored. In a real machine access to main memory is very slow
compared to access to the register file and so the benefits of the register file are much greater than they appear in this
example.

A typical machine has 8 or 16 registers. Our Simple CPU has 8, named by the numbers 0 through 7.

2.2.2 The Memory

Main memory is implemented by a set of memory chips external to the CPU chip. Each memory chip is called DRAM
(dynamic random- access memory), after the technology used to implement the memory. A DRAM bit is implemented

12

by a single transistor and a capacitor. A set of memory chips that implement the entire memory is called a DIMM
(dual-inline memory module).

Data in memory is named by its address. Most systems give a unique name to every byte of the memory (a byte is 8
bits). Most data access to memory is to 32-bit (4-byte) words (sometimes called longs). Real CPUs have instructions
for accessing memory in 1, 2, 4 (and sometimes 8) byte chunks. Data in our Simple Machine can only be accessed in
4-byte chunks.

You should thus think of memory as if it were an array of bytes, but where you only access memory by reading or
writing four-byte chunks at a time. In this analogy, the array index is the memory address.

The CPU talks to memory by sending simple request messages that say one of two things: “please tell me the value of
the four bytes starting at address A” or “please store V in the four bytes starting at address A.

The machine instructions that implement programs are also stored in memory. They are read by the CPU in a similar
fashion, but using the registers PC and instruction. Once every cycle the CPU reads the instruction in memory at
the address in PC and stores it in the instruction register. It then further decodes instruction into its various
parts, described above.

In real systems, the interaction between the CPU and memory is a bit different than this, because the CPU chip stores
some instructions and data values on chip in special memories called caches. The CPU always looks in these caches
first before reading from memory. If the data it wants is in a cache, it gets it quickly. If not, it requests the data from
memory and then stalls its execution until the data arrives (typically 200 or more cycles later). You will learn about
caching in 313.

The key thing to keep in mind about the memory is that it is a very simple abstraction: a byte array. It stores data, but
doesn’t have any idea what that data means. It stores instructions and program variables, but it doesn’t know that. All
it knows is that it has a bunch of byte values and that they each have a unique address.

There are, however, two remaining issues to consider.

Aligned Access

When reading or writing multi-byte data from or to memory, access to memory is fastest if the addresses used to
access that data are aligned. For example, when accessing 32-bit words, aligned addresses are those addresses where
the lower two bits are 0 (i.e., the address modulo 4 is zero). For example, 0, 4, 8, etc. are aligned addresses, but 1, 2,
3, 5 etc. are not.

The reason why aligned addresses are more efficient is that in this scheme every byte of the target word has the same
word address. For example, the bytes 8, 9, 10 and 11 are all part of an aligned word with byte address 8. In binary
these numbers are 1000, 1001, 1010, and 1011. Notice that if you look only at the bottom two bits you have the
numbers 0-3, which pick the one of the bytes of the number. If you ignore these two bits, you have the number 10 for
all of them. This is the value’s word address.

If we allowed addresses to be unaligned, then an instruction could read a word starting at address 10 to access bytes
10, 11, 12, and 13. Again, in binary these are 1010, 1011, 1100, and 1101. Notice that the word address of the first
two bytes is 10 and the word address of the second two is 11. It might not seem like much, but implementing hardware
well is a difficult task, and even this simple complication is problematic.

As a result, some systems require that addresses be aligned and thus issue a hardware error if a program attempts
to read a word at an address that is not word aligned. Other systems, such as Intel processors found in PCs, allow
unaligned access, but implement the access more slowly than aligned access.

See also Bryant and O’Hallaron § 3.9.3.

13

Endianness

The final issue for memory is to decide how the bytes of memory are assembled to make multi-byte integers. Again,
consider the four-byte (32-bit) word. We know that each word in memory has a byte address, call it a, and thus the
word is comprised of memory bytes with addresses a, a + 1, a + 2 and a + 3. We also know that a 32-bit number is
comprised of four bytes, one of which store the bits 0-7, another 8-15, another 16-23 and another 24-31. If ni is the
value of bit i of the number, then the value of the number is

∑31
n=0 ni × 2i.

Now the question is, into which byte of the number do the memory bytes go. This decision is called the endiannes of
the memory, named after Jonathan Swift’s Gulliver’s Travels in which two groups argue about which end of an egg is
properly eaten first, the big end or the little end. Like those characters, computer systems are also divided into the Big
Endians and the Little Endians.

Big Endian processors eat numbers from memory from the big part of the number first. Thus the byte with address a is
interpreted to store the most-significant byte of the number, i.e., bits 24-31, and thus byte a + 3 is the least-significant
byte, i.e., bits 0-7. Systems like the PowerPC, Sun SPARC etc. are Big Endian (though the PowerPC can actually do
both). Our Simple Machine is also Big Endian.

Little Endian processors, on the other hand, eat numbers starting with the little end of the number. Byte a is the
least-significant byte, bits 0-7, and a + 3, the most, bits 24-31. Intel processors are Little Endian.

You need to pay attention to Endianness when transferring binary data between processors with different Endianness,
either over the network or via secondary storage, such as DVD-ROM. You also need to pay attention to this issue when
transferring data to or from an Little Endian processor over a network, because the Internet uses Big Endian numbers.
For example, the number 1 stored on an Intel processor would be read as a 16,777,216 on a PowerPC, Sun computer,
or in the Internet (16,777,216 = 224).

Hexadecimal and Binary

One last thing. Sometimes we are more interested in the bit-pattern of a number than in its decimal value. In these cases
it is convenient to represent the number in base sixteen, called hexadecimal or hex for short. A hex digit corresponds
to four bits. So the number 16,777,216, for example, is more easily understood to be 224 if it is represented in hex:
0x1000000. Of course we could see the same bit pattern in its binary representation, but this is tedious for large
numbers: 0000 0001 0000 0000 0000 0000 0000 0000. In hex, you group the bits into fours and replace each group
with a hex digit. The “0x” prefix is just a signal that the number is a hex number, so we know that 0x10 is not 10 base
ten, but 16.

2.2.3 The Anatomy of a Cycle

Each cycle of the CPU executes a single instruction. What happens in the cycle is completely determined by the
value stored in registers at the beginning of the cycle. All the computer does now is send these values through the
combinational circuit to compute new values for the registers. The cycle ends when all of these new values are ready
to be stored.

An important register is instruction (and its companion component registers such as insOpCode, insOp0
etc.). These registers store a single instruction read from memory. It is this instruction that the CPU executes in the
current cycle. Like other registers, the bits of these instruction registers feed into various parts of the combinational
circuit selecting the particular parts of the circuit that implement this particular instruction. The instruction also names
the registers from the register file that are the inputs and outputs of the computation (e.g., ALUselA etc.).

One way to view the execution of a cycle is to divide it into two stages: fetch and execute. You will see in 313 that

14

three additional stages (decode, memory and write-back) are used to more completely describe the execution of a
processor and the way that instructions are pipelined through the processor. But, we ignore that stuff for now.

The Fetch Stage

The fetch stage has two very simple jobs. First, fetch the instruction stored in memory at the address in the register PC
into the register instruction. Second, update PC to point to the next instruction. The fetch stage must thus know
the size of the current instruction. Some systems address this issue by requiring that every instruction be the same size.
Fetch can thus do its job without knowing anything about the instruction it just fetched. For example, if instructions
are two bytes, the combination logic that implements the fetch stage would do something like this.

1. read two bytes from memory starting at address in PC

2. place result in instruction

3. add two to value in PC

If a CPU implements instructions of different sizes, however, the Fetch stage has a bit harder job. Intel processors, for
example, have variable- length instructions.

Our Simple Machine uses 2- and 6-byte instructions. And so one way to implement the Fetch stage is to read the 2
bytes at address PC from memory, check insOpCode to determine the instruction length and finally fetch the addition
4 bytes if required.

The Fetch stage takes the value in instruction and splits it into a set of subfields, one each for each part of the
instruction. Every instruction consists of an insOpCode and one or more operands. The insOpCode is a number
that identifies the function the instruction performs and the operands specify its inputs or outputs. There are three ways
an operand can be specified: a constant value, a register number or a memory address. Instructions typically have one
or two input operands and an output operand.

The Execute Stage

The execute stage performs the computation specified by insOpCode on the operands specified by the instruction.
If you think of what the execute stage does in term of a Java program, its like a switch statement (i.e., switch
(insOpCode)) where each case of the switch statement performs the computation of a particular instruction.

Special Purpose Registers

In addition to the general-purpose register file the CPU also has a set of special purpose registers. Our Simple Machine
has these.

PC The memory address of the next instruction to execute (i.e., on the next cycle).

instruction The value of the current instruction being executed. Loaded from memory by the beginning of the cycle
from memory at PC.

insOpCode The value of the operation code part of the instruction.

insOp0 The value of the instruction’s first operand.

15

insOp1 The value of the instruction’s second operand.

insOp2 The value of the instruction’s third operand.

insOpImm For instructions that store a small immediate (i.e., constant) number, this is the value of that number.

insOpExt For instructions that store a large (32-bit) immediate, this is the value of that number.

2.3 Instruction Set Architectures

An Instruction Set Architecture (ISA) is the interface to the processor. It describes the format of instructions, the
meaning of opcodes, the way that operands are interpreted, and the endianness of numbers.

2.3.1 Simple Machine ISA Constraints

The ISA we develop for the Simple Machine is restricted to have the following properties

1. 2-byte instructions with optional 4-byte addendum

2. Big Endian numbers

3. byte-addressed memory

4. aligned-word data access to memory

2.3.2 Instruction Set Styles (RISC vs CISC)

A number of different instruction set architectures have been developed over the years and a number are still in
production, implemented by various different companies such as Intel, AMD, IBM, Freescale Semiconductor, Sun
Microsystems, and Sony. Intel, for example has products that implement a few different ISAs. Their most popular, of
course, is the IA32 architecture implemented by the Pentium chips used in most desktop and laptop PCs. Game con-
soles, TV set-top-boxes, iPods, and automobile control systems, for example, use different processors that implement
different ISAs. There are two principal themes that distinguish ISAs from each other.

One design theme, followed by most companies other than Intel, and the one we use in the our SM213 ISA, is called
the “Reduced Instruction Set Computer”, more commonly called a RISC. The key idea of RISC Architectures is to
design the ISA to make it as easy as possible to implement it efficiently in silicon (on the computer chip). RISC
instructions are thus each as simple as possible. Only a few instructions are permitted to access memory; the rest are
restricted to accessing data in registers. RISC instructions are typically fixed sized. The tradeoff made in keeping the
ISA simple is that the compiler has to work a bit harder. A given high-level language statement when translated to
machine instructions will typically require more instructions in a RISC ISA than a CISC. RISC machine code is thus a
bit harder for humans to read. The rationale for making this tradeoff is that we know how to make smart compilers and
humans hardly ever have to read or write machine instructions directly (except in classes like this). Furthermore, the
benefits of the simple instruction set on hardware implementation mean that even though a statement requires more
instructions in a RISC than a CISC these instructions execute faster and thus RISC implementations typically offer
superior performance.

On the other hand, ”Complex Instruction Set Computers”, CISC, are designed to make the compiler’s job easy and to
give hardware designers fits. Prior to the 1980’s all computers were CISCs. The RISC idea developed in the 80’s in
response to problems with implementing CISCs. At that time, all CISC computers were implemented by several chips

16

connected on a circuit board. The first RISC architectures (MIPS and SPARC) were simple enough to be implemented
on a single chip, as we do today for all processors, giving them a huge performance advantage.

The IA32 ISA implemented by Intel and AMD is a CISC ISA1. Typical of CISC, IA32 allows virtually every in-
struction to access memory, has variable-length instructions, and includes fairly complex instructions and addressing
modes. When comparing SM213 to IA32, you would see many cases where special-purpose instructions and address-
ing modes in IA32 allow high-level-language statements to be implemented by fewer instructions than in SM213.

2.3.3 Types of Opcodes

RISC instruction sets such as SM213 typically have three types of instructions: memory access, ALU and control flow.
Memory access instructions either load data from memory into a register or store the value in a register into memory.
The instructions differ on how they specify the memory address they access.

ALU instructions perform a variety of math operations on values stored in registers. Some ALU instructions treat
register values as integers to add, subtract, multiply, divide etc. them. Other ALU instructions treat register values as
strings of bits to perform bitwise logical operations on them such as and, or, xor, shift etc. For example, if register r0
stores the value 0x0000000f and register r1 stores the value 0x55555555, an instruction that ANDs r0 and r1 and
places the result in r2, puts the value 0x00000005 in r2. Similarly, an instruction that shifts r0 left 2 bits changes
its value from 0x0000000f to 0x0000003c and an instruction that shifts r0 right 2 bits changes its value from
0x0000000f to 0x00000003. Shifting left n bits is equivalent to multiplying by 2n; shifting right is like dividing
by 2n.

There are two different ways to shift a number right: sign extension and zero extension. Instruction sets typically have
two different shift-right instructions, one for each approach. While a compiler generates code to shift a number to
the right, it selects the zero extend version unless the value being shifted is a signed integer. In Java, for instance, all
numbers are signed, but Java provides a special unsigned (i.e., zero-extension) right shift operator, >>>; the normal
right shift, >> performs sign-extension.

To see why we need these two different types of right shifts, recall from 121 that signed numbers are represented in
computers in two’s complement form. The number -2 is thus stored as 0xfffffffe (you can get the hex repre-
sentation of any number by running gdb, the gnu debugger, and typing p/x -2 or some other number). Shifting
-2 to the right one bit should be like dividing it by two to get -1 (i.e., 0xffffffff). The zero-extend-shift-right,
however, shifts the number to the right and places a 0 in the vacated most-significant bit, yielding 0x7fffffff. The
sign-extend-shift-right, does the right thing by filling the vacated bit with the value that just vacated that bit. If the
most-significant bit is 1, then it stays 1 when shifting right. If it is 0, it stays 0. Sign-extended-shift right of 2 is 1
(0x00000002← 0x00000001) and sign-extended-shift right of -2 is -1 (0xfffffffe← 0xffffffff).

Finally, control-flow instructions comprise the third instruction type in a RISC ISA. These instructions specify the
instruction to execute next, either conditionally or unconditionally. Normally, instructions are executed in sequence.
To implement loops, if statements, switch statements and procedure calls, control-flow instructions, called jumps and
branches are used to pick a different instruction to execute next.

Unconditional jumps and branches specify the memory address of the next instruction to execute, either by encoding
its 32-bit value as a constant in the instruction, by specifying a register that stores this value, by specifying a register
that stores the memory address where the branch address is located, or by specifying a signed constant to add to the
current program counter to get the next-instruction address.

Conditional branches specify a register, a test condition and a target-instruction address. Test conditions typically
are things like equal to zero, less than zero, etc. The instruction applies the specified test to the value in the named
register and jumps to the target address only if the test succeeds. For example, the next instruction executed after a

1In fact all modern implementations of IA32 actually use a RISC micro architecture; IA32 CICS instructions are translated on the fly by the
processor into RICS micro ops for execution.

17

branch-on-zero of r0 to 0x1000 is at address 0x1000 if r0 stores a 0 and the instruction following the
branch sequentially, otherwise.

2.3.4 Addressing Modes

Every instruction specifies an opcode and a set of operands. The ISA defines how these values are encoded into
an instruction and how the operands are interpreted. There are typically one, two or three operands per instruction,
depending on the instruction. Following the IA32 standard, the SM213 ISA puts source operands before destination
operands. For example mov r0, r1, copies the value in register 0 into register 1.

The part of the ISA design that specifies how to interpret operand values is called the addressing mode specification.
In the SM213 ISA each opcode itself specifies the addressing mode of its operands. In a real instruction set, however,
the addressing mode of operands is usually specified by adding a few mode bits to the encoding of each operand.
In SM213, for example, opcode 2 performs a load indexed operation and thus specifies that all three operands are
registers and that the two source-specifier registers specify a memory address by taking the value of one, multiplying
it by four, and adding it to the other. There are two other load instructions (opcodes 1 and 2) that differ only in how
their operands are interpreted. In real instruction set, there would typically be a single load opcode and the instruction
would encode an addressing-mode number and value (register or constant, depending on the mode) for each.

Figure 3.3 in Bryant and O’Hallaron (the text book), on page 169, lists the addressing modes provided by the IA32
instruction set architecture. The SM213 machine implements a subset of these addressing modes, using opcodes to
specify which one an instruction uses.

Here are the SM213 ISA addressing modes:

Mode Operands Meaning
immediate v value← v is a 32-bit constant
register r value← register[r]
base + displacement o b value← memory [o*4 + register[b]]
indexed b i value← memory [register[b] + register[i] *4]

2.3.5 Assembly Language

Machine instructions are just patterns of bits (you could think of them as numbers). In the SM213 ISA we simplify
reading and writing of machine instructions by using one or more hex digits to represent each key part of an instruction:
opcode and each operand. The instruction 6123 thus performs opcode 6 (ALU) using function code 1 (add) on
registers 2 and 3. Still, machine code is very hard to read, because it’s just numbers.

Assembly Language is a symbolic (i.e., textual) representation of machine language. It is the way that humans nor-
mally read and write machine instructions. There is a direct, one-to-one, correspondence between assembly language
instructions and machine instructions. Even though opcodes, operands and memory locations are named by symbolic
labels, somewhat like in a high-level language, assembly language isn’t a high level language at all. It is not compiled
to yield machine instructions, as Java or C is. Instead, an assembler performs a simple, instruction-by-instruction
translation from assembly to machine instructions. In fact, this one-to-one property between assembly and machine
code means that it is easy to translate in the other direction too. A disassembler can translate from machine instructions
back in to assembly instructions.

The Gnu C compiler (i.e., gcc) can optionally generate an assembly-code file instead of compiling to machine code
as it usually does. You select this option by adding the -S option when compiling. To simplify reading the generated
code you should also ask the compiler to do some basic code optimization by also adding -O1 or possibly -O2 to the
command line. Thus typing gcc -O1 -S S1-global-static.c produces the file S1-global-static.s

18

that contains the assembly-code implementation of the C snippet in the native ISA of the machine on which you execute
this command. To see IA32 assembly language, for example, you need to be on an Intel processor. To determine the
ISA on which you are running, execute the command uname -a by tying this string in to a UNIX shell.

The SimpleMachine Simulator is also an assembler. You will normally write snippets and programs in its assembly
language (based in the MIPS assembly language), either in an external editor or in the simulator itself. The simulator
has a powerful GUI editor for assembly language designed to facilitate debugging and program understanding. It
allows you to write assembly language, add comments to assembly instructions, add symbolic labels to stand in
for addresses and to save and restore this information to and from external files. The simulator translates assembly
instructions on-the-fly into machine code (bits/numbers), shows you both in the display and allows you to execute the
instructions to see what they do. The simulator also shows you the affect of instruction execution on values stored in
CPU registers and in main memory.

In SM213 assembly language, instructions are described by an opcode name following by a set of operands separated
by commas. Registers are named with an r following the a register number (e.g., r0). This is pretty much the same
as IA32. The main difference is that IA32 registers have strange names like %eax.

Here are SM213 ISA opcode names:

OpCode Description
ld load from memory
st store into memory
mov move between registers
add add integers
and bitwise logical and of two 32-bit values
inc increment an integer
inca add four to an integer (increment word address)
dec decrement an integer
deca subtract four from integer (decrement word address)
not bitwise compliment (i.e., not) of 32-bit value
gpc get value of program counter
shr shift right
shl shift left
br unconditional branch
beq branch when equal to zero
bgt branch when greater than zero
j unconditional jump
halt stop processor
nop do nothing

Here is how the RISC assembler formats the SM213 ISA addressing modes.

Mode Format Example
immediate $# ld $v, r0
register r# add r0, r1
base + displacement #(r#) ld -4(r0), r1
indexed (r#,r#, 4) ld (r0,r1,4), r2

Recall that not all addressing modes can be applied to all opcodes and that in the SM213 ISA the addressing mode is
specified by the opcode, not operand mode tags, as would be the case in most ISAs.

The IA32 assembly language and addressing modes are explained in Chapter 3 of Bryant and O’Hallaron (the text-
book).

19

2.3.6 The SM213 ISA

A key strategy for helping you achieve the learning goals of this course is to design the ISA as we go, adding new
instructions when necessary to implement new features found in the progression of snippets. We tackle this design
problem in stages. At the beginning of a stage, we examine a snippet of C code. We then work out how to compile
the code into the SM213 instructions we have so far. We will see from time to time that we need a new instruction or
addressing mode. If so, we’ll consider the design tradeoffs and if it seems to make sense, we’ll add the new instruction.
So, it is helpful to not see the entire SM213 at once. For this reason, to maintain the suspense, the SM213 ISA is not
revealed here. Instead, it is revealed in sections that cover each snippet. For reference, the full ISA is presented at the
end and in the Appendix.

2.4 Variables

One of the central features of virtually all programming languages is the variable. Variables are abstractions created by
the programming language to allow programs to store and retrieve data values. In languages like Java and C, variables
have names and data types. At the hardware level, however, variables are simply locations in main memory. You write
code that accesses variables. When the compiler sees this code, it generates machine instructions to read and write the
memory locations that implement those variables. Sometimes the compiler knows a variable’s address and sometimes
it doesn’t. If it doesn’t know the address, the code it generates must compute this address when the program runs. In
either case, the compiler’s job is to generate a set of machine instructions that implement the specified variable access,
reading a value its value from memory or writing a new value to memory. In this section we will examine how it does
this for different types of variables and what machine instructions are required of the ISA to do so.

2.4.1 Classifying Variables

As a starting point, it is useful to classify variables in Java and C by considering when their storage location in memory
is allocated. Both languages have three basic types of variables according to this classification, though the languages
differ a bit from each other in a few ways.

Both languages have what they call static variables. In Java, storage for variables declared with the static keyword
is allocated when the enclosing class is loaded and remains in the same place throughout the execution of the program.
In C, storage for variables declared in the global scope (i.e., outside of any procedure declaration) and those declared
with the static keyword is allocated by the compiler. In C, the compiler knows the address of static variables and it
encodes this address as a constant in the instructions it generates to access them.

Both languages also have variables that are allocated dynamically by explicit actions of a program while it executes.
In Java, the new statement instantiates an object from a class, creating instances of the class’s non-static variables;
these are called the instance variables of the class. C does not have classes or objects, but it has something called
structs that serve a similar role, but with no methods. In C, a call to the malloc procedure allocates storage that the
program type casts to a struct, thus creating an instance of the variables declared within the struct. In both languages,
these instance variables have a dynamic address: the compiler doesn’t know the address and so it can not hard-code it
in the instructions it generates. But, the compiler does know the relative location of these variables within their object
or struct and so this offset can be hard-coded in instructions; and it is.

Finally, both languages have variables that are allocated implicitly when a method or procedure is called. These local
variables and arguments are similar to instance variables in that their address is dynamic but their relative position is
static. In this case the position is relative to the beginning of the procedure’s activation frame.

In addition to this classification, it is also useful to observe that both languages allow variables to store either values or
references to values. In Java, builtin-type variables (i.e., char, byte, short, int, long, double) store values directly and

20

all other variables store references to dynamically allocated values. C is similar, but with the additional flexibility that
variables can store arrays and structs directly, instead of by reference, if they choose. In both languages, accessing a
value that is stored by reference requires reading the value’s address from memory first, before using this address to
read its value from memory.

Note that when a variable stores a reference, accessing the referent values requires two steps. First the machine must
read the value of the variable that stores the reference. This variable might be either a static, instance variable or
procedure local or argument. Then, the program uses this reference to read the referent value, which is sometimes also
an instance variable and sometimes an array element.

In the remainder of this section we will examine static and instance variables storing both values and references.
We save the discussion of local variables and arguments until after we have talked about procedure calls in Section
Section 2.8.

2.4.2 SM213 Instructions for Accessing Variables

We now reveal the instructions the SM213 ISA includes for accessing variables. We’ll also throw in the halt and
nop instructions.

OpCode Format Semantics Eg Machine Eg Assembly
load immediate 0d-- r[d]← vvvvvvvv 0100 ld $0x1000,r1

vvvvvvvv 00001000
load base 1osd r[d]← m[o× 4 + r[s]] 1123 ld 4(r2),r3
load indexed 2sid r[d]← m[r[s] + r[i]× 4] 2123 ld (r1,r2,4),r3
store base+dis 3sod m[o× 4 + r[d]]← r[s] 3123 st r1,8(r3)
store indexed 4sdi m[r[d] + r[i]× 4]← r[s] 4123 st r1,(r2,r3,4)
halt f000 f000 halt
nop ff00 ff00 nop

2.4.3 Static Variables

In Java static variables are declared by adding the keyword static before the type of the object. These variables are
associated with the class that contains them and not the objects that are instances of that class. A class, for example,
that contains the declaration static Foo f; stores one copy of the variable f shared by all instances of the class.

There are two ways to declare static variables in C. First, any variable declared in the global scope, outside of any
procedure declaration, is static. Second, any variable whose type declaration is preceded by the keyword static is
also static, even if it is declared within the scope of a procedure. There is exactly one copy of each static variable for
the entire program.

The C compiler is in complete control of the layout of static information in memory. When it sees the declaration
of a static variable, it decides where in memory this variable will reside and it records this information in an internal
table. When it subsequently sees a statement that accesses a static variable, it retrieves the variable’s address from this
table and inserts it as a constant in the machine instructions it generates to implement that access. Once the compiler
is finished the table is discarded. The compiled program contains no information about the type, size or location
of variables, other than as constant numbers encoded in the machine instructions that access those variables. For
debugging purposes, however, C compilers does usually insert a table, called a symbol table in a part of the executable
file they create. This information is not used to execute the program it is simply there so that humans can examine
variables by their name when debugging.

A static variable, like any variable, can store a value directly or it can store a reference to a value; in C we usually

21

call these references pointers. The advantage of storing a reference is that the variable can refer to different values at
different times during the program’s execution and that these values can be allocated and de-allocated from memory
dynamically (i.e., while the program is running). A disadvantage is that the compiler can not know the value’s address
and thus can not encode it as a constant in instructions that access the variable. Instead, it must generate instructions
that perform two memory accesses: one to read the reference and a second to read or write the referent value.

In Java, only scalars can be stored by value; all arrays, even those accessed by static variables are allocated dynamically
and are stored by reference. In C, scalars and arrays can be stored by value or by reference. Let us look first at static
scalars and arrays that are stored by value.

Static Scalars and Arrays

From S1-global-static.java, here is an example of the declaration and use of a static scalar in Java.

public class Foo {
static int a;

public void foo () {
a = 0;

}
}

Java does not support statically allocated arrays, but C does. From snippet S1-global-static.c, here is a
example of the declaration static scalar and a static array in C; both scalar and array are accessed by value.

int a;
int b[10];

void foo () {
a = 0;
b[a] = a;

}

We now focus our attention on the machine code generated by a C compiler for S1-global-static.c. First, the
compiler allocates four bytes to store the value of a and 40 bytes to allocate the values of the array b[0]..b[9].
Lets assume that the compiler locates a at address 0x1000 and b[0]..b[9] at address 0x2000.

Here is an outline of machine code that executes the statement a=0.

1. Copy the constant 0 into a register, say r0.
r0← 0

2. Copy the address constant 0x1000, the address of a, into a register, say r1.
r1← 0x1000

3. Store the value in register r0 into memory at the address in register r1.
m[r[1]]← r[0]

From S1-global-static.s, here is the SM213 assembly code that implements this assignment statement.

22

.pos 0x100
ld $0x0, r0 # r0 = 0
ld $a, r1 # r1 = address of a
st r0, 0x0(r1) # a = 0

Notice that in addition to the three instructions executed by the CPU there is an additional line at the beginning of the
assembly language file (i.e., .pos 0x100). Operation names starting with a dot, like this, are assembler directives
that exist to provide the assembler with information but that do not result in machine code. In this case, the .pos
directive tells the assembler where in memory to store the next instruction, in this case 0x100.

And here is the machine code.

0000 00000000 # r0 = 0
0100 00001000 # r1 = address of a
3001 # a = 0

If the compiler (or you) wishes to provide initial values to the variables a and or b, assembly language provides a
directive .long to do so. Keep in mind that this step is completely optional. Doing so doesn’t allocate the storage for
these variables it simply assigns values to some parts of memory when the program loads — before it starts executing
— that is, statically. Question: how are static variables allocated?

Here is the assembly code to statically initialize a and b to -1. Doing so is useful for debugging so that you can see
if and when the 0 is stored in a by the snippet. Normally, compilers initialize variables to 0 (or don’t initialize them)
unless the high-level language program provides a static initializer (e.g., a = −1).

.pos 0x1000
a: .long 0xffffffff # a
.pos 0x2000
b: .long 0xffffffff # b[0]

.long 0xffffffff # b[1]

.long 0xffffffff # b[2]

.long 0xffffffff # b[3]

.long 0xffffffff # b[4]

.long 0xffffffff # b[5]

.long 0xffffffff # b[6]

.long 0xffffffff # b[7]

.long 0xffffffff # b[8]

.long 0xffffffff # b[9]

Here is an outline for the array access in the second statement, b[a]=a. We treat this statement entirely on its own,
ignoring anything the compiler learned from generating the first statement. This is precisely what the initial pass of a
compiler typically does: treat every statement as an island. Subsequent, optimization passes of the compiler look to
improve the generated code by using results computed in one instruction in later instructions etc., if possible. In this
case it would likely notice that it knows the value of a in b[a]=a statically; it must be 0. We will not optimize our
code and so we assume that the compiler does not know the value of a, which in general (i.e., if the a=0 statement
wasn’t there) it won’t.

1. Copy the constant 0x2000, the address of b[0]..b[9], into a register, say r0.
r[0]← 0x2000

2. Copy the constant 0x1000, the address of a, into a register, say r1.
r[1]← 0x1000

23

3. Load the value in memory at the address stored in r1 into a register, say r2. This loads the value of a into r2.
r[2]← m[r[r1]]

4. Store the value in r2 into memory at the address that results from adding the value in register r0, the base of the
array b[0]..b[9] to four times the value in register r2, the index into the array.
m[r[0] + r[2] ∗ 4]← r[2]

This style of access, called base plus index, is very common in machine code. One register stores the base address of
an object. Another register, or perhaps a constant, is an index into that array. The byte offset of the indexed value from
the beginning of the object is determined by multiplying the index by the size of the things that it indexes; in this case
this is an array of 4-byte ints and so we multiply by four. The memory address of the target value is the sum of the
object’s base and its offset.

For example, consider the case were a=2. The base address of the b[0]..b[9] array is 0x2000 and so the address
of b[0] is also 0x2000. Thus the address of b[1] is 0x2004 and the address of b[2] is 0x2008 which is
0x2000 plus four times 2.

From S1-static-global.s, here is the SM213 assembly code that implements this statement. Finally, here is
the assembly code.

ld $b, r0 # r0 = address of b
ld $a, r1 # r1 = address of a
ld 0x0(r1), r2 # r2 = a
st r2, (r0, r2, 4) # b[a] = a

And here is the machine code.

0000 00002000 # r0 = address of b
0100 00001000 # r1 = address of a
1012 # r2 = a
4220 # b[a] = a

Notice that this code uses the store indexed SM213 instruction (in assembly st r2, (r0,r2,4) and in machine
code 4220) which multiplies the value in r2 (the second operand) by four and address that to the value in r0 (the third
operand) to get the memory address here it stores the value of r2 (the first operand).

2.4.4 Dynamic Arrays

In Java, all arrays are allocated dynamically. C has dynamic arrays too.

From S2-global-dyn-array.java here is an example of declaring, allocating and accessing a dynamic array
in Java.

public class Foo {
static int a;
static int b[] = new int[10];

void foo () {
a=0;
b[a]=a;

}
}

24

From S2-global-dyn-array.c here is the equivalent C code.

int a;
int* b;

void foo () {
a = 0;
b = (int*) malloc (10*sizeof(int));
b[a] = a;

}

In Java the array is allocated dynamically when the statement b[] = new int[10] executes. In C the array
is allocated by the statement b = (int*) malloc (10*sizeof(int)), which implements a call to the
procedure named malloc.

Notice that the C syntax for accessing static and dynamic arrays is exactly the same (i.e., b[a]=a in this example).
The code the compiler generates, however, is different for the two cases. The difference is due to the fact that the
address of a dynamic array is a dynamic value; the compiler can not know it. What the compiler does know is the
address of the variable b that will store the address of the array when the program is running. But, to get the address of
the array the compiler will need to generate code that reads the value of b from memory at runtime. In C terminology
we say that b stores a pointer to the array.

Here is an outline of the machine code that implements b[a]=a when b[0]..b[9] is allocated dynamically and
the static variable b stores a pointer to it. Compare this outline to the outline for static arrays given above. You should
be able to explain what parts are different, what parts are the same, and why.

1. Copy the constant 0x2000, the address of b[0]..b[9], into a register, say r0.
r0← 0x2000

2. Load the value in memory at the address stored in r0 into a register, say r0.
r0← m[r[0]]

3. Copy the constant 0x1000, the address of a, into a register, say r1.
r1← 0x1000

4. Load the value in memory at the address stored in r1 into a register, say r2. This loads the value of a into r2.
r2← m[r[1]]

5. Store the value in r2 into memory at the address that results from adding the value in register r0, the base of the
array b[10] to four times the value in register r2, the index into the array.
m[r[0] + r[2] ∗ 4]← r[2]

Here is the SM213 machine code for this statement. Again, compare this carefully to the code for the static case.

0000 00002000 # r0 = address of b, which stores pointer to array
1000 # r0 = value of b, the pointer to the array
0100 00001000 # r1 = address of a
1012 # r2 = a
4220 # b[a] = a

Finally, here is the SM213 assembly code the compiler would generate.

25

.pos 0x100
ld $0x0, r0 # r0 = 0
ld $a, r1 # r1 = address of a
st r0, 0x0(r1) # a = 0
ld $b, r0 # r0 = address of b (which stores address of b[0])
ld 0x0(r0), r0 # r0 = pointer to array
ld $a, r1 # r1 = address of a
ld 0x0(r1), r2 # r2 = a
st r2, (r0, r2, 4) # b[a] = a
halt # halt

.pos 0x1000
a: .long 0xffffffff # a
.pos 0x2000
b: .long 0xffffffff # address of b[0]; loaded dynamically

To simplify analysis of this snippet in the simulator the actual text of S1-global-dyn-array.s is a snapshot of the program
taken at runtime after the array has been allocated and its address stored in the variable b. Doing it this way allows
us to delay talking about how to implement dynamic memory allocation and procedure calls. So, here’s the snapshot
with the array already allocated.

.pos 0x2000
b: .long 0x00003000 # address of b[0] - loaded dynamically
.pos 0x3000
b_data: .long 0xffffffff # b[0] - all allocated dynamically

.long 0xffffffff # b[1]

.long 0xffffffff # b[2]

.long 0xffffffff # b[3]

.long 0xffffffff # b[4]

.long 0xffffffff # b[5]

.long 0xffffffff # b[6]

.long 0xffffffff # b[7]

.long 0xffffffff # b[8]

.long 0xffffffff # b[9]

2.4.5 Instance Variables

Java instance variables are allocated as part of an object (i.e., in the instance of the class in which they are defined).
Before a program starts running, there are no objects and thus there are no instance variables. As the program runs, it
allocates objects from a part of memory called the heap and the instance variables reside within each of these objects.
If the program creates one thousand instances of a class Foo that declares an instance variable int i;, for example,
the program also creates one thousand instances of the variable i, one as part of each object.

In order for the machine to access any variable it needs to possess its memory address. The machine instructions that
implement such an access are generated by the compiler. Just as before, let us again ask the question, what does the
compiler know about the address of these variables?

In the case of the static variables, as we have just examined, the compiler knows the address of the variables and can
thus hard-code this address in the instruction it generates to access them. The address of instance variables, however,
can not possibly be known by the compiler, because they are contained within an object that is allocated dynamically
(i.e., at runtime). In fact the machine code for accessing the variable i in the example above must work for all one
thousand copies of the variable, which will be at one thousand different addresses, and so it clearly can not hard code

26

the address of i in the accessing instructions.

Instance variables are thus dynamic variables, because their address is not known until runtime.

There is, however, something about instance variables that is known statically: their position within the object that
contains them. The compiler is in complete control of the format objects take on when they are allocated, because the
number, relative position, and size of every instance variable is a static property of the program. And so, the compiler
knows statically how far each variable will be from the beginning whatever object that contains it. The compiler can
thus hardcode these offsets in the instructions it generates for accessing the variable. If the compiler can generate code
to load the address of this object into a register, then it can access the variable using its static offset from this address,
hardcoded into the memory-access instruction. In the SM213 ISA the instructions 1xxx (load base+displacement)
and 3xxx (store base+displacement) exist precisely to implement this style of access.

Instance Variables in C

C does not have objects or classes. It does, however, allow a set of variables to be allocated, deallocated and accessed
as group. In C this grouping is called a struct. Structs are very much like Java classes. There are two differences. First,
unlike classes, structs have no associated methods; in C, the struct just defines the instance variables. Second, unlike
classes, structs can be allocated either statically or dynamically. In Java, all objects are allocated dynamically.

For example, consider the following Java class with two public instance variables e and f.

public class D {
public int e;
public int f;

}

In C a similar struct type can be created like this:

struct D {
int e;
int f;

};

In Java there is only one way to declare variables of type D; these variables store a reference to objects of type D (or
objects that implement the interface of class D).

D d = new D ();

In C, however, both static and dynamic declarations of instances of struct D are allowed. In this example d0 static and
d1 is dynamic.

struct D d0;
struct D* d1;

Variables of type struct D statically allocate the object. Subsequent access to instance variables looks like the Java
syntax: D.e and D.f. Access to these variables is like access to static scalars and arrays. The compiler knows the
address of instance variables of these classes, because it statically allocates the object that contains them. There is no
equivalent construct in Java.

27

To declare a variable to store a reference to instances of struct D, which can then be dynamically allocated, a C
program declares their type to be struct D*. Subsequent access to instance variables using struct pointers uses
a different syntax from their static variant and from Java: D->e and D->f. These references are the ones that are
equivalent to the Java accesses. Be careful to notice that the C syntax that matches Java is for a type of access not
possible in Java. The equivalent accesses in the two languages use different syntax.

Access from Outside Variable’s Class

One way to access an instance variable in Java is to declare the variable public and access it from outside of the
class that stores it. This style of access has two parts: a variable that stores an object reference and a name of a public
instance variable in that object. For example, accessing variable i of the object referred to by variable a is expressed
as a.i. At this point you are likely thinking it isn’t good programming practice to expose instance variables in a
class’s public interface. You are right. It is typically far better to access them through methods of that class, hiding the
variable behind the class’s interface. However, this outside-of-the-class access is a bit simpler to understand and it is
how it is done in C, so lets start here.

Here is the Java code of such an access taken from S4-instance-var.java.

public class D {
public int e;
public int f;

}

public class Foo {
static D d = new D ();
public void foo () {

d.e = d.f;
}

}

And the corresponding code in C, taken from S4-instance-var.c. For completeness, this snippet includes both
the static and dynamic versions of an instance of D.

struct D {
int e;
int f;

};

struct D d0;
struct D* d1;

void foo () {
d1 = (struct D*) malloc (sizeof(struct D));
d0.e = d0.f;
d1->e = d1->f;

}

We begin with the static case, which is very similar to the access to an element of a static array. The difference is that
an array is a list of elements, all of which have the same type and are named by a numeric index into the list. The
struct (object), on the other hand, is a list of elements, each of which can be of a different type and are named by a

28

variable name. In the case of the array, the element selector can be a dynamic value (e.g., a[i] where the value of i
is determined at runtime). In the case of a struct, however, the element selector is always static: the name of a variable
that the compiler turns into a constant offset from the beginning of the struct.

The compiler is responsible for laying out static data in memory. Here is how it might layout the static variables d0
and d1.

2000: 00000001 # d0.e
00000002 # d0.f

3000: 00000000 # d1

At runtime, the execution of the procedure-call statement d1 = (struct D*) malloc (sizeof(D)); will
allocate a struct D object somewhere in the heap, say at address 0x4000, and place that address into memory at
address 0x3000, the location of the variable d1. To simplify debugging the snippet provides a snapshot of the memory
after this statement has been executed and with unique values assigned to each of the instance variables of d0 and
d1. Do not be confused by this, however, the memory image that the compiler creates is the one listed above. The
static variables in C (i.e., d0.e, d0.f and D1 are initialized to zero and of course the dynamic variables (i.e., d1->e
and d1->f) are not initialized as so have the value of whatever was stored there previously. So, at the point in the
execution just before the execution of the d0 assignment, here is what the data part of memory looks like.

2000: 00000001 # d0.e
00000002 # d0.f

3000: 00004000 # d1
4000: 00000003 # d1->e

00000004 # d1->f

Let’s first look at an outline of code the compiler would generate to implement the access to the static struct, the
statement d0.e = d0.f;.

1. Copy the constant 0x2000, the address of d0, into a register, say r0.
r0← 0x2000

2. Read the value in memory at the address in r0 plus 4, the address of d0.f, into a register, say r1.
r1← m[r[0] + 4]

3. Store the value in r1 into memory at the address in r0 plus 0, the address of d0.e.
m[0x2000 + 0]← r1

From S4-instance-var.s, here is the SM213 assembly code that implements this statement.

ld $d0, r0 # r0 = & d0
ld 0x4(r0), r1 # r1 = d0.f
st r1, 0x0(r0) # d0.e = d0.f

Here is the machine code.

0000 000200 # r0 = & d0
1101 # r1 = d0.f
3100 # d0.e = d0.f

29

Now let’s look at the access to the dynamically allocated instance of struct D using pointer d1 in the statement
d1->e = d1->f;.

Here’s an outline of the code.

1. Copy constant 0x3000, the address of d1, into a register, say r0.
r0← 0x3000

2. Read the value in memory at the address stored in r0, the value of d1, into a register, say r0.
r0← m[r[0]]

3. Read the value in memory at the address in r0 plus 4, the address of d1->f, into a register, say r1.
r1← m[r[0] + 4]

4. Store the value in r1 into memory at the address in r0 plus 0, the address of d1->e.
m[r[0] + 0]← r[1]

Notice that the only difference between access to the static and dynamic instances is the addition of step 2 for the
dynamic access. This is precisely what we say for static and dynamic arrays. In the dynamic case, there is one extra
step required, to read the value of the pointer variable d1 from memory.

From S4-instance-var.s, here is the SM213 assembly code that implements this statement.

ld $d1, r0 # r0 = & d1
ld 0x0(r0), r0 # r0 = d1
ld 0x4(r0), r1 # r1 = d1->f
st r1, 0x0(r0) # d1->e = d1->f

And here is the machine code.

0000 00003000 # r0 = & d1
1000 # r0 = d1
1101 # r1 = d1->f
3100 # d1->e = d1->f

The assembly code of the S4 snippet also initializes dynamic variables in order to simplify your exploration of
S4-instance-var in the simulator, as described above. The following part of that snippet that performs this
initialization is thus something the compiler could not produce. Be sure you understand why.

.pos 0x3000
d1: .long 0x00004000 # d1
.pos 0x4000
d1_data: .long 0x00000003 # d1->e

.long 0x00000004 # d1->f

Access from Member Method of Variable’s Class

In Java, but not C, instance variables can be accessed from a method of the class that contains the instance variable.
The access in this case simply names the instance variable, leaving off the a., used in the outside-the-class case
described above.

For example, here is this style of access in S4-instance-var.java.

30

public class D {
int e;
int f;
public void foo () {
e = f;

}
}

The machine code that implements the statement e = f; is exactly the same as that of the dynamic access to d1
above with one important difference. In the previous example, the address of the object that contains the instance
variables e and f is stored in a static variable (i.e., d1). The compiler knows address of this variable and can thus
generate code to access it by encoding this address as a constant in the first instruction it generate. In the current case,
however, the address of the containing object is implicit in the access expression. This implicit object reference is
implemented using a hidden variable, which in Java is called this, that stores the address of the current object when
executing an instance method (i.e., a method that is not static). But, where is the this variable stored? How can
the compiler access it?

One answer is that Java and other object-oriented languages such as C++ can reserve a general purpose register to
store the address of the current object. This decision is arbitrary and its entirely up to the compiler to decide. For
example, the compiler might decide to reserve r7 for this purpose. Really this hidden variable / reserved register is
just a hidden argument of the method containing the access and is handled much the same as other arguments. More
about arguments later.

To invoke a method on a object, the compiler generates code something like this.

1. Save the current value of r7 in memory, in a special region called the runtime stack.

2. Put the address of the object being invoked into r7.

3. Invoke the method.

4. Restore the old value of r7 by reading it back from memory.

Section 2.8 describes method invocation and the stack in detail.

Assuming that the value of this is stored in r7, then the assignment of e to f would be implemented like this.

1. Read the value in memory at the address in r7 plus 4, the address of this.f, into a register, say r1.
r[1]← m[r[7] + 4]

2. Store the value in r1 into memory at the address in r7 plus 0, the address of this.e.
m[r[7] + 0]← r[1]

Here is the SM213 Assembly code for this statement.

ld 0x4(r7), r1
st r1, 0x0(r7)

And, here is the machine code.

1171 # r1 = this.f
3107 # this.e = this.f

31

2.4.6 Java References and C Pointers

A variable that stores the address of a program value is called a reference in Java and a pointer in C. In Java every
variable but the scalar base types are references. In C, on the other hand, the language provides a high degree of
flexibility in dealing with pointers and selecting between static and dynamic allocation.

C provides three different types of syntax for dereferencing pointers: *, [], and ->. It also provides the & operator
for determining the address of a variable.

Consider the code below, for example.

int i;
int *ip = &i;

The variable ip is a pointer to an integer. Assigning it the value &i makes it point to the value stored in the variable
i. A subsequent assignment *ip=1, therefore changes the value of i to one.

2.5 Dynamic Allocation and Deallocation

A key difference between C and Java is the way they handle dynamically created objects and the variables that store
references to them.

2.5.1 Pointers and References

Read Bryant and O’Hallaron § 3.8.2 and 3.10.

2.5.2 Allocating and Deallocating Dynamic Objects

Bryant and O’Hallaron § 9.9 2ed describes allocation and deallocation in C. It talks about the heap, the location
in memory from which dynamic objects are allocated and the implementation of malloc () and free (), the
procedures that handle dynamic allocation and deallocation in C. There is much more detail there about those imple-
mentations and the issues surrounding them than you are required to know. What you need to know is what the heap
is and what a simple allocator does and what it means to free something.

Dynamic allocation in Java occurs when a program executes the new statement. Like C, Java allocates dynamic objects
from a heap. Unlike C, however, Java does not have an operation that explicitly frees objects so that their memory
space can be reused. Instead, a background process called a garbage collector runs periodically to determine which
objects can not possibly be referenced again by the program. It automatically frees these objects.

2.5.3 Type Safety and Explicit Deallocation

Java is a type safe language, which means that the language guarantees that an object can never be used in a way that
is not allowed by its type. Java allows programs to type cast an object to change its type by placing a type name in
parentheses in front of an object reference, but it only allows casts that are permitted by the type system. The rule
states that you can cast objects only to types that those objects implement. Sometimes Java can enforce this type rule
statically and can thus generate a compile-time error if a cast is not permitted. Other times, Java must insert a runtime
type check that generates a runtime exception when violations occur.

32

For example, consider the following type declaration.

public class Parent {
void p();

}
public class Child extends Parent {

void c();
}

The following are all permitted, because objects of type Child implement everything in the interface of class
Parent. It is thus fine to have a pointer of type Parent refer to an object of type Child. Furthermore, if a
pointer of type Parent actually stores an object of type Child, it is perfectly fine to cast that pointer back to a
Child and perform Child operations on it; this form of type cast, called a downcast, however, requires a runtime
check to ensure validity, because the actual type of objects referred to by a variable are not know until runtime.

Parent p = (Parent) new Child ();
((Child) p).c ();

Explicit deallocation is not easily compatible with type safety. The problem is that if an object is deallocated while the
program still holds a reference to it in a variable and then that object’s memory space is subsequently re-allocated to
store another object, the original pointer can be used to access the new object. This bug is called the dangling pointer
problem and it is covered in more detail in the next section. Now, if the old pointer and the new objects are if different
type, this bug is also an un-caught type-safety violation, because the old pointer access the new object as if it were the
type of the object that used to reside at that location. Fixing this problem requires a runtime type to be executed each
time a pointer is de-referenced, an overhead that is not compatible with the core philosophy of C.

C programs explicitly deallocate objects and thus C suffers from the dangling pointer problem and the lack of type
safety it entails. C is not type safe in other ways. A big way is that C performs virtually no type checks when programs
cast a reference from one type to another. The only restriction in C is that the new and old types be the same size. This
check is extremely weak, however, because all pointers are the same size (e.g., 4 bytes in a 32-bit processor). In C, a
pointer can be type cast into a pointer of any type. Even worse, C allows programs to cast integers to pointers and vice
versa. And so, a program can put an arbitrary number in an integer, cast it to a pointer and then write into memory at
this location.

2.5.4 The Dangling Pointer Problem and Other Bugs With Using Pointers in C

Read Bryant and O’Hallaron § 9.11.1–9.11.10.

2.5.5 Memory Leaks

Read Bryant and O’Hallaron § 9.11.11 to see what a memory leak is and how you can create one in C.

Despite the fact that Java reclaims garbage objects automatically, it is still possible (easy, actually) to accidentally
create memory leaks in Java by retaining references to objects that are no longer needed by a program. An example
of a common error occurs when one uses a data structure such as a hash table to index a set of objects. Even when all
other references to these objects have been released by the program, the objects remain allocated in the heap, because
the hash table retains a reference to all of them.

It is thus as important in Java as it is in any language that supports dynamic allocation to design for object lifetime
and to take care that the program does not retain references to objects past their planned lifetime. Good programming

33

practices include (1) setting pointer (reference) variables to null when the object they point to is no longer needed,
(2) removing objects from indexing data structures and other collections when they are no longer needed and/or (3)
use Java reference objects to store references without inhibiting their subsequent collection as described in the next
section.

You’ll notice, for example, that collection objects such as hash tables have a remove () method. This is really very
much like and explicit delete in C. The key difference between this form of delete in Java and calls to the free ()
procedure in C is that Java’s approach is type safe and can not cause a dangling pointer. In Java, the programmer
deletes the references to objects while the Java runtime deletes the objects themselves. In C, the programmer deletes
the objects and is also responsible to ensure that she has deleted all references to the object first.

2.5.6 Java Reference Objects

Strategies for avoiding unintended object retention in Java fall into two categories: those where the programmer takes
explicit, imperative action to delete object references when appropriate and those where the programmer instead takes
a declarative approach in which she labels some references as reclaimable when storing them. The advantage of this
second, declarative, approach is that it is generally less error prone.

2.5.7 Garbage Collection

Read Bryant and O’Hallaron § 9.10.

2.6 ALU Instructions

The ALU performs basic math and bit-logical operations. Every instruction set includes a number of operations that
are implemented by the ALU, these are commonly called the ALU instructions. In RISC ISAs, ALU instructions are
not permitted to access memory. Instead their input and output operands are registers, or sometimes constants encoded
in the instruction. In the SM213 ISA, operands of ALU instructions are all registers, with the exception of the shift
operations, which use a constant in the instruction to specify the number of bits to shift.

2.6.1 SM213 Instructions for Doing Math

OpCode Format Semantics Eg Machine Eg Assembly
rr move 60sd r[d]← r[s] 6012 mov r1, r2
add 61sd r[d]← r[d] + r[s] 6112 add r1, r2
and 62sd r[d]← r[d] & r[s] 6212 and r1, r2
inc 63-d r[d]← r[d] + 1 6301 inc r1
inc addr 64-d r[d]← r[d] + 4 6401 add $4, r1
dec 65-d r[d]← r[d]− 1 6501 dec r1
dec addr 66-d r[d]← r[d]− 4 6601 add $-4, r1
not 67-d r[d]←!r[d] 6701 not r1
shift 7dss r[d]← r[d] << s 7102 shl $2, r1

71fe shr $2, r1

34

2.7 Control Flow

All control flow changes in ISA are of the form GOTO <jump-target memory address>.

Some instructions only goto the address if a certain condition holds, for example, if a register value is 0, while other
instructions jump unconditionally.

Some instructions specify the target instruction address using a 32-bit constant, while others specify an offset to add
to the current program counter value. Absolute-address jumps are 6-byte instructions. The advantage of pc-relative
addressing is that jump instructions are only 2 bytes. We use the term jump to refer to instructions that use absolute
addresses and branch to refer to instructions that use pc- relative addressing. Using pc-relative addressing, the address
of the next instruction is typically the value of the current pc minus 2 plus two times the signed offset in the instruction.
The minus two is because when an instruction address X is executing the value in pcReg has already been advanced
by the fetch stage to X + 2. The times-two part is because instructions are at minimum two bytes. The constant in the
instruction is thus an index, not an offset, into the instructions. If the calculation were instead pcReg = pcReg - 2 +
offset, then odd offsets would never be used, and we would thus waste valuable space in the instruction.

Finally, some jump instructions specify the target jump address statically with a constant hard-coded in the instruction,
while others specify the address dynamically, getting the target address from a register or from memory. Static control
flow is used for loops, if-then-else and static procedure calls. Dynamic control flow is used for switch statements,
return statements and dynamic method dispatch in languages like Java.

2.7.1 SM213 Instructions for Static Control Flow

We now reveal the instructions the SM213 ISA includes static-control-flow manipulation.

OpCode Format Semantics Eg Machine Eg Assembly
branch 8-pp pc← pc + pp× 2 1000: 8004 br 0x100a
branch if equal 9spp if r[s] == 0, pc← pc + pp× 2 1000: 9104 beq r1, 0x100a
branch if greater aspp if r[s] > 0, pc← pc + pp× 2 1000: a104 bgt r1, 0x100a
jump b--- pc ← aaaaaaaa with .pos aaaaaaaa label : b000 j label

aaaaaaaa 00001000

2.7.2 for loops

Let’s look at a for loop that computes the sum of an array of numbers. We now want to focus just on the control flow,
so we’ll try to keep everything else as simple as possible. Thus, for example, all of the variables the code uses are
static.

Summing numbers in Java from S5-loop.java.

public class Foo {
static int s = 0;
static int i;
static int a[] = new int[10];

static void foo () {
for (i=0; i<10; i++)

s += a[i];

35

}
}

Summing numbers in C from S5-loop.c.

int s=0;
int i;
int a[] = {2,3,4,6,8,10,14,16,18,20};

void foo () {
for (i=0; i<10; i++)

s += a[i];
}

Notice that in these examples the number of times the loop executes is actually known statically, by the compiler. In
this case, the compiler might actually generate machine code that implements this loop by not using any control-flow
instructions. It might instead unroll the loop like this:

s += a[0];
s += a[1];
s += a[2];
s += a[3];
s += a[4];
s += a[5];
s += a[6];
s += a[7];
s += a[8];
s += a[9];

If fact this strategy is just want the compiler would do if it was optimizing the machine code it generates to execute as
quickly as possible, though at some sacrifice in code size.

However, we choose static values for the array size and thus the number of iterations of the loop just to keep the
variable access simple. Our interest here is in generating code for loops where the number of loop executions is not
know statically by the compiler and thus control-flow instructions are required.

Deconstructing the loop

The only control flow instructions provided by hardware are of the form goto <address> if <condition>.
So, the first step in generating code for high-level-programmin-language control-flow construct such as the for loop is
to deconstruct to use only gotos.

The loop shown above can be deconstructed into several pieces like this.

1. Set the initial value of the induction variable i=0;

2. Test the loop condition i<10 and goto to the first statement after the end of the loop, step 6, if the condition is
false.

3. Execute the body of the loop

36

4. Increment the induction variable i++.

5. Goto step 2.

6. Continue with code after the loop.

C actually has a goto statement and labels for goto targets. It’s accepted wisdom that are considered to be harmful,
thanks to Edgser Dijkstra’s 1968 paper ”Go To Statement Considered Harmful”, so don’t use C’s gotos. Having said
that, let’s deconstruct the for loop above into C using gotos.

int i = 0;
loop: if (i>=10) goto done;
s += a[i];
i++;
goto loop;
done:

The translation of this code into machine instructions is now quite straightforward with the exception of the condition
test if (i<10) goto body;. Typically of RISC ISAs, the SM213 ISA’s condition branches test the value of a
register and branch if the register is equal to zero, in one case, and if it is greater than zero, in another. Real RISC ISAs
include other tests, like less than zero, less than or equal to etc., but they typically do not have tests that compare the
value of two registers or that compare the value of a register to a constant other than zero. In this case, we can have i
in a register and would like to compare it to 10, but we can’t. We can only compare it to zero. So, how can we express
a comparison with 10 as a comparison with 0? The answer is to subtract 10 from i and look at the result.

We can rewrite the conditional branch above as follows.

loop: j=i-10;
if (j==0) goto done;

SM213 Code Example

Before giving the SM213 assembly code that implements this loop, let’s decide that the compiler places the variables
starting at address 0x1000 like this.

.pos 0x1000
s: .long 0x00000000 # s
i: .long 0x00000000 # i
a: .long 0x00000002 # a[0]

.long 0x00000004 # a[1]

.long 0x00000006 # a[2]

.long 0x00000008 # a[3]

.long 0x0000000a # a[4]

.long 0x0000000c # a[5]

.long 0x0000000e # a[6]

.long 0x00000010 # a[7]

.long 0x00000012 # a[8]

.long 0x00000014 # a[9]

The SM213 assembly code for this loop, found in S5-loop.s is here.

37

Initialization
.pos 0x100

ld $0x0, r0 # r0 = 0 (temp for i)
ld $a, r1 # r1 = address of a[0]
ld $0x0, r2 # r2 = 0 (temp for s)
ld $0xfffffff7, r4 # r4 = -9

Loop Condition
loop: mov r0, r5 # r5 = r0

add r4, r5 # r5 = r0-9
bgt r5, end_loop # if r0>9 goto +4

Loop Body
ld (r1, r0, 4), r3 # r3 = a[r0]
add r3, r2 # r2 += a[r0]
inc r0 # r0++

Goto the Top
br loop # goto -7

After the Loop
end_loop: ld $s, r1 # r1 = address of s

st r2, 0x0(r1) # s = temp_s
st r0, 0x4(r1) # i = temp_i
halt

Notice that the branch instructions use a symbol to specify the branch-target address. Use the simulator to examine
the machine code for these instructions. You will see that the machine code contains the PC offset (i.e., +4 or -7) that
when added to the current PC yields the branch-target address. They symbols here are simply a convenience of the
assembler: a big one, because otherwise you’d need to compute the difference between address of the branch and the
target to write the instruction. And, what would happen if you added or deleted (or changed the size of) an instruction
between the branch and the branch target? Try it in the simulator and see what happens to the target offset.

2.7.3 if statements

If statements are a simple reapplication of the control-flow constructs used to implement for loops above.

Deconstructing the if statement

Once again, we can deconstruct if statements by using gotos, as follows.

1. If loop condition is true, goto “then” part (step 4).

2. Do the “else” part.

3. Goto to first statement following if statement (step 5).

38

4. Do the ”then” part.

5. Continue with statement that follows if statement

Let’s pick an example that computes the maximum of two integers. For simplicity, once again, variables are statics.
Also, we’ll skip the Java snippet this time, because the Java and C are virtually identical (other than the variable
declarations and the lack of enclosing class declaration).

Here is S6-if.c.

int a=1;
int b=2;
int max;

void foo () {
if (a>b)

max = a;
else

max = b;
}

This if statement can be deconstructed to use C gotos as follows.

j = a-b;
if (j>0) goto thenp
max = b;
goto done;
thenp: max = a;
done:

SM213 Code Example

Let’s assume that the compiler chooses to layout variables like this.

.pos 0x1000
a: .long 0x00000001 # a
.pos 0x2000
b: .long 0x00000002 # b
.pos 0x3000
max: .long 0x00000000 # max

Here is the SM213 code that implements this if statement, taken from S6-if.s.

Test a>b
.long.pos 0x100

ld $a, r0 # r0 = &a
ld 0x0(r0), r0 # r0 = a
ld $b, r1 # r1 = &b
ld 0x0(r1), r1 # r1 = b

39

mov r1, r2 # r2 = b
not r2 # temp_c = ! b
inc r2 # temp_c = - b
add r0, r2 # temp_c = a-b
bgt r2, then # if (a>b) goto +2

Else Part
else: mov r1, r3 # temp_max = b

br end_if # goto +1

Then Part
then: mov r0, r3 # temp_max = a

After If
end_if: ld $max, r0 # r0 = &max

st r3, 0x0(r0) # max = temp_max
halt

2.7.4 SM213 Instructions for Dynamic Control Flow

Some high-level language features can not be implemented with static control flow instructions. As we will see,
method return, dynamic method invocation and switch statements all require or benefit from a type of jump instruction
in which the target jump address is not determined until runtime. In these cases, the compiler can not know the target
address when it compiles the program.

Here now are the SM213 ISA instructions for dynamic-control-flow manipulation.

OpCode Format Semantics Eg Machine Eg Assembly
get program counter 6fpd r[d]← pc + (o = 2× p) 6f31 gpc $6, r1
jump indirect cspp pc ← r[s] + (o = 2× pp) c102 j 4(r1)
jump double indirect, base+displacement dspp pc ← m[(o = 4× pp) + r[s]] d102 j *8(r1)
jump double indirect, indexed esi- pc ← m[4× r[i] + r[s]] e120 j *(r1,r2,4)

2.7.5 Static Method Invocation

Method invocation involves both control flow — jumping to the invoked method and back when the method returns
— and data flow — the passing of arguments to the invoked method and of a return value back to the invoking code.
In this and the next two sections, we consider only the control flow aspect of method invocation. Argument passing is
discussed separately in Section 2.8.

Static method methods and procedures can be invoked by static control flow constructs. In Java, a method declared
with the static keyword preceding its return type is a method of the class in which it is declared and not of the
objects that are instances of that class. Static methods thus do not have access to instance variables of objects, but only
the the static variables defined in the class. A program invokes a static method by putting the class name before the
procedure name, separating the two by a period. The compiler uses static control flow instructions to implement these
calls. In C, all procedures are static and all direct procedure calls are implemented with static control flow instructions
(procedure variables are discussed in Section 2.7.7 below).

40

Here is an example of a static method call in Java, taken from S7-static-call.java.

public class A {
static void ping () {}

}

public class Foo {
static void foo () {

A.ping ();
}

}

And in C, taken from S7-static-call.c.

void ping () {}

void foo () {
ping ();

}

In both cases, the procedure call itself is simply a jump to the address of the first instruction of ping(), an address
that the compiler knows and that it can thus hardcode in an instruction. For example, if the code for ping() starts at
address 0x500, the SM213 assembly instruction for direct jump would be.

j 0x500 # goto 500

Or, using a symbol for the address.

j ping

To complete the implementation of this method invocation, we need to consider how the compiler will generate code
for the return statement in ping (note that in this example, ping’s return is implicit).

2.7.6 Method Return

All methods and procedures return to their caller, sometimes the return occurs implicitly after the last statement of the
procedure executes and sometimes it is explicit when a return statement is executed. In either case, the return is
a jump to a code address, called the return address. For any call, the return address is the address of the instruction
immediately following the procedure call. For example, if the code that makes a call to ping() is at address 0x100,
and the 8-byte version of the procedure call is used, then the return address is 0x108.

100: 0000 00000500 # r0 = 500
c000 # goto address in r0

108:

The value of a method’s return address is determined at runtime when the method is invoked. The compiler can not
possibly know the value of this address, because a method can be invoked from multiple places in a program. The
code the compiler generates for the return statement must work for all of these calls and thus clearly, the return address

41

can not be hardcoded in the return instructions. Instead, this address must be placed in memory or a register by the
code that implements the procedure call, so that the return instructions can use this value in an indirect branch.

Typically, the calling code places the return address in a register, sometimes called the return-address register or ra.
In our case, we will arbitrarily reserve the register r6 to hold the return address. It is entirely up to the compiler to
decide where to save this address. All that is required is for it to use the same convention for both method calls and
returns.

It remains to be seen how the method invocation code determines the value of the return address it stores in r6. To
do this, we must add to the SM213 ISA the instruction 6fpr or gpc, which copies the current value of the program-
counter register, PC, into a general-purpose register and adds a constant value to it that is specified in the instruction.
The invocation code includes this instruction, which loads the program counter into r6. The return address is a fixed
number of bytes after this instruction, in this case six. The compiler thus adds this constant to r6 to compute the
return address. To understand this calculation, recall that when executing an instruction, the program counter stores
the address of the next instruction. In the code below, there is one six-byte instruction (i.e., c000 which jumps to
ping) between the gpc and the halt instruction to which the call returns.

The following code thus completes the static procedure call example we started above.

6f36 # ra = pc + 6
b000 00000500 # goto ping ()
f000 # halt

Or in assembly.

foo: gpc $6, r6 # r6 = pc of next instruction
j ping # goto ping ()
halt

Returning from a method is simply an indirect jump using the return-address stored in r6.

.pos 0x500
ping: j (r6) # return

There is one remaining issue and that is what do we do if ping makes a procedure call. It too will need to store a
return address in r6, but without losing the value of r6 provided to it by its caller. The solution requires a dynamic
data structure for temporarily storing this sort of thing as we shall see in Section 2.8.

2.7.7 Dynamic Method Invocation

The cornerstone of object-oriented languages is the ability to implement new classes by extending existing classes or
interfaces. The goal in either case is to allow the code written for a base class or interface to operate on objects of a
new class without changing the pre-existing code, as long as the new class extends that base class or implements that
interface.

With this in mind recall that while all variables in Java have a static type (i.e., class or interface), the type of the objects
to which they refer is determined dynamically. Now consider what the compiler must do to implement an instance-
method invocation (i.e., invocation on a non-static method). What it knows statically is the type of the variable and the
name of the method to invoke. What it does not know, however, is the type of the object to which the variable refers.
This object is allocated and assigned to the variable at runtime and thus, in general, its type is determined dynamically

42

(i.e., at runtime). But, the compiler must know the actual type of the object in order to correctly dispatch control flow
to the correct method, because different implementations of the static type can have different implementations of the
same method (e.g., if a subclass overrides a superclass method). This type of method invocation is called polymorphic
dispatch, because the dispatch decision must be made at runtime based on the dynamic type of the object in question.

Dispatching to static or to final methods can be implemented using static method invocation, because the com-
piler either knows that the method to invoke is determined by the variables static class or that the method can not
be extended by any subclasses. All other methods, however, require dynamic method invocation that implements
polymorphic dispatch.

Example of Polymorphic Dispatch in Java

For example, consider this Java code taken from SA-dynamic-call.java.

public class A {
void ping () {}

}

public class B extends A {
void ping () {}
void ping () {}

}

public class Foo {
static A a;
static void foo () {

a = new B ();
a.ping ();

}
}

The variable a is statically declared to store a reference to an object that implements the interface defined by the class
A. It can thus store instances of class A, but also instances of class B as well, because class B extends A. Class B,
however, defines a new implementation of the ping method. And thus, when a stores an instance of A, the statement
a.ping() must invoke the method A.ping, but when a stores an instances of B, it must invoke B.ping. In
general, the compiler can not know the actual type of the object to which a refers and thus it can not know statically
the memory address of the procedure to invoke.

Like other procedure calls, the machine code that implements the statement a.ping() will contain a jump to the
first instruction of the appropriate version of the ping method. In this case, however, the jump instruction must get
this address from some data structure referred to by the object itself.

We will described a simplified, but essentially correct, solution that includes something called a jump table in every
object. In fact, Java does something a bit trickier so that it can store jump tables with classes and not objects, to
minimize the space overhead of storing jump tables. In both cases, however, the key element is the same: there is
a jump table in memory and the code that implements a method invocation access the jump table using the object’s
memory address.

In our simplified view, every object stores a jump table when an entry for every new instance method it implements.
The object also stores the instance variables declared by its classes. The compiler organizes these two things together
by class, so it can determined statically the offset to methods and variables of an object without knowing the object’s
actual class, but only knowing the static type of a variable that stores a reference to it.

43

To do this, the compiler lays out the jump table and instances variables for a class starting with its base class. It places
these values at the beginning of the object. It now knows a static offset to every method or object declared in the
object’s based class — and this offset is the same for objects of the base-class and all classes that extend it. It repeats
this process, step-by-step for all of the object’s parent classes, starting with the base. For each subclass it adds only
the new methods and variables declared in that subclass. Method declarations that override parent methods do not get
new entries in the jump table, they use the entry created by the parent-class declaration, but modified to store the new
address of the overridden procedure. The compiler performs this procedure for every class once, to determine the size
of objects that instantiate the classes and to produce a template for the jump table, filled in with the appropriate code
addresses for every method implemented by the class. It uses this information to implement statements that created
new instances of the class, to determine the size of the object and to initialize the object’s jump table.

Let’s return to the SA-dynamic-call example and assume that method addresses are 0x500 for A.ping, 0x600
for B.ping and 0x700 for .pong. The jump tables for objects of type A and B would be initialized as follows.

Jump table for instances of class A: 0x500 (address of ping)

Jump table for instances of class B:
0x600 (address of ping)
0x700 (address of pong)

The code that implements the method invocation a.ping () will jump to the address stored in memory at offset 0
(constant known to the compiler and hard-coded in the instruction) from the address stored in variable a. If a were a
static variable stored at address 0x100, then the SM213 instructions that implement this are as follows.

.pos 0x100
ld $a, r0 # r0 = address of a
ld 0x0(r0), r0 # r0 = pointer to object
gpc $2 r6 # r6 = ra
j *0x0(r0) # goto address stored in a

Notice that these calls use the double-indirect, base-plus-displacement jump instruction, dr--, which was designed
specifically for this purpose.

Jump tables in C

In C, all procedure calls are static. The idea of polymorphic dispatch is so powerful, however, that many large C
programs — and all modern operating systems written in C — implement jump tables and a form of polymorphic
dispatch using structs and explicitly-coded procedure variables.

Procedure variables are a feature of C not found in Java, but found in C#. They were, in fact, one source of a major
lawsuit between Sun Microsystems and Microsoft Corporation that Sun won and that lead to Microsoft to develop
C#. Sun controls the Java language specification. Microsoft implemented a variant of Java that included procedure
variables and a few other things. Sun complained and got the court to order Microsoft to stop. Microsoft did and
eventually stopped supporting Java and instead developed their own language, C#, which is remarkably similar to
Java, but with some variations.

A procedure variable is a variable that stores a pointer to a procedure and that can be used to invoke procedures
dynamically. In C, a procedure variable is declared using a syntax very similar to the declaration of the procedure
for which it will store pointers, but with a * in front of the procedure name and parentheses around the name of the
procedure. Thus, a procedure variable named foo that can store pointers to procedures that have no arguments and
no return value would be declared like this.

44

void (*foo)();

This variable is assigned a value by a statement whose right-hand-side is the name of a real procedure, with without
listing its arguments. For example, the following code assigns foo the address of the procedure bar.

void bar () { /* do something */ }
void zot () {

foo = bar;
}

Subsequently a statement of the form foo (); will call bar (). Notice, however, that this is a dynamic procedure
call. The compiler will not know the address of the procedure to call when it generates the code for this statement.
Just as in the Java case described above, it will use a double-indirect jump to go to the instruction stored in memory in
the variable foo.

Finally, it is now possible to implement the sort of dynamic dispatch found in SA-dynamic-call.java in the
following way, taken from SA-dynamic-call.c.

typedef struct {
void (*ping)();

} A;

void A_ping () {}

A* new_A () {
A* a = (A*) malloc (sizeof(A));
a->ping = A_ping;
return a;

}

typedef struct {
void (*ping)();
void (*pong)();

} B;

void B_ping () {}
void B_pong () {}

B* new_B () {
B* b = (B*) malloc (sizeof(B));
b->ping = B_ping;
b->pong = B_pong;
return b;

}

A a;

void foo () {
A* a = (A*) new_B ();
a->ping ();

}

45

The SM213 implementation is in SA-dynamic-call.s as follows.

.pos 0x100
ld $a, r0 # r0 = address of a
ld 0x0(r0), r0 # r0 = pointer to object
gpc $2, r6 # r6 = ra
j *0x0(r0) # goto address stored in a
halt

.pos 0x200
a: .long 0x00001000 # a - allocated dynamically by new_A
.pos 0x500
A_ping: j 0x0(r6) # return
.pos 0x600
B_ping: j 0x0(r6) # return
.pos 0x700
B_pong: j 0x0(r6) # return
.pos 0x1000
object: .long 0x00000600 # allocated dynamically by new_B

.long 0x00000700

As in previous examples with dynamic objects, we have allocated the object statically here (i.e., the memory labelled
object). As before, we do this only to simplify the example. In reality, this memory would have been allocated and
initialized dynamically when the new or malloc statement/procedure executed.

2.7.8 Switch Statements

It might seem funny to talk about switch statements in this section because, after all, what do switch statements have
to do with dynamic procedure calls. Well, it turns out they are very similar. Before we see why, let’s review what a
switch statement is and then think about how it might be implemented.

A switch statement can be implemented by converting it to a set of if-then-else statements. Similarly, programmers
can always choose to use if statements instead of switch statements, if they like. The reverse, however, is not true. If
statements are more flexible than switch statements and thus only restricted types of if statements can be converted
to a switch statement. Most languages place two key restrictions on switch statements that separate them from if
statements: (1) the switch condition must evaluate to an integer and (2) case labels must be constant integer values.
These restrictions allow many switch statements to be implemented more efficiently than the equivalent set of if
statements, by jumping directly to the matching case. If if statements are used, on the other hand, each case requires
the evaluation of the conditional expression in the if and a conditional branch.

For example, consider this C switch statement taken from SB-switch.c (Java switch statements have exactly the
same syntax).

switch (i) {
case 0: j=10; break;
case 1: j=11; break;
case 2: j=12; break;
case 3: j=13; break;
default: j=14; break;

}

This statement is logically equivalent to the following if-then-else statement:

46

if (i==0)
j=10;

else if (i==1)
j=11;

else if (i==2)
j=12;

else if (i==3)
j=13;

else
j=14;

Notice that in the if-statement case, the expression (i ==?) is evaluated over and over again for each case label. If i
is 3, for example, this expression will be evaluated four times at runtime and each time a conditional branch will be
computed as well.

This switch statement can alternatively be implemented using an double indirect jump and a jump table, similar to that
used for dynamic method invocation. The key difference here is that the index into the table is a dynamically deter-
mined value, the value of the switch statement expression (i in this case). Switch statements are thus best implemented
using the double-indirect-indexed instruction eri-.

The key idea is that the compiler allocates a jump table for the switch statement and places the code address of each
case arm (the statement block associated with a particular case) in the table, which is then index by the value of the
switch expression at runtime.

The size of this jump table is determined by the difference between the minimum and maximum case-label values;
there must be an entry in the table for every integer between the minimum and maximum, inclusively. This example
thus requires a four-entry jump table. Four entries would be required even if cases 1 and 2 were missing; in this case
the entries for 1 and 2 would store the address of the switch statement’s default arm. Notice that if the minimum
case value is 100, for example, no jump-table entries for cases 0-99 are required, because the switch value can be
normalized at runtime by subtracting 100 from it (i.e., using jump-table entry 0 for case 100).

Here is an outline of the code that implements the switch statement itself.

1. Evaluate the switch expression. In the example, this just requires reading i from memory into a register, say r0.

2. Subtract the value of the minimum case label. Notice this is a constant value hard-coded in an instruction. In
the example, the minimum case label is 0, so this step is left out.

3. Load the address of the branch table into a register, say r1. Again, this is a constant know to the compiler and
thus hard coded in an instruction.

4. Jump double-indirectly using r0 and the index value and r1 as the base value.

Here is the SM213 machine code for this switch statement, where the variables i and j are declared as global (i.e.,
static) ints.

100: 0000 00001000
1000
0100 fffffffd
6101
a117 # if (i>3) goto default
0100 00000800
e100

47

120: 0100 0000000a # case 0:
8010 # goto done
0100 0000000b # cose 1:
800c # goto done
0100 0000000c # case 2:
8008 # goto done
0100 0000000d # case 3:
8004 # goto done
0100 0000000e # default:
8000 # goto done

0000 00001004 # done:
3100
f000

800: 00000120 # & (case 0)
00000128 # & (case 1)
00000130 # & (case 2)
00000138 # & (case 3)

1000: 00000002 # i
1004: 00000000 # j

And, here is the assembly code.

(sm) x/i 0x100:5
0x00000100: 0000 00001000 ld $0x1000, r0
0x00000106: 1000 ld 0x0(r0), r0
0x00000108: 0100 fffffffd ld $0xfffffffd, r1
0x0000010e: 6101 add r0, r1
0x00000110: a117 bgt r1, 0x140
(sm) x/i 0x120:13
0x00000120: 0100 0000000a ld $0xa, r1
0x00000126: 8010 br 0x148
0x00000128: 0100 0000000b ld $0xb, r1
0x0000012e: 800c br 0x148
0x00000130: 0100 0000000c ld $0xc, r1
0x00000136: 8008 br 0x148
0x00000138: 0100 0000000d ld $0xd, r1
0x0000013e: 8004 br 0x148
0x00000140: 0100 0000000e ld $0xe, r1
0x00000146: 8000 br 0x148
0x00000148: 0000 00001004 ld $0x1004, r0
0x0000014e: 3100 st r1, 0x0(r0)
0x00000150: f000 halt

2.8 Method Scope: Local Variables, Method Arguments and the Stack

Finally, we turn to the question of how to implement the local variables and arguments of methods. These variables are
part of the scope of a method and exist in memory only while the method is executing and only for a particular instance

48

of that execution. If a method is invoked 100 times without returning, for example, memory stores 100 distinct copies
of that methods local variables, one for each execution instance.

While local variables and arguments together constitute a method’s local scope, they are slightly different from each
other in how they are used and implemented. We’ll first discuss local variables and then arguments.

Accessing Local Variables of a Method

Conceptually the local variables of a method are like a class defined for that method. An instance of this class is
implicitly allocated when the method is invoked and is explicitly deallocated when the method returns. As with
instance variables, the compiler determines the layout of local variables in this scope object and thus knows their
offset from the beginning of the scope. Statements that access local variables are implemented in precisely the same
manner as access to instance variables, as a static offset from an address stored in a register. In the case of instance
variables, this register is r7 for methods of the class in which the variables are defined (e.g., the implicit access to
this. In the case of local variables it will be a special register that, for reasons will be clear in a moment, is the called
the stack pointer. The SM213 “compiler” convention will be to use r5 for this purpose.

Here, for example, is a bit of Java that contains an assignment to an instance variable and a local variable.

public class Foo {
int i;
int k;
void foo () {

int l;
int m;

k=0;
m=0;

}
}

The two assignment statements, to k and m are implemented by the following SM213 instructions.

0000 00000000 # r0 = 0
3017 # k = 0
3015 # m = 0

In this case, by coincidence, the offset to k from the beginning of the object and to m from the beginning of the local
scope are both 4. For other variables these values might be different, but in every case the compiler will know the
offset and will thus be able to encode it as a constant in an instruction, as was done here (the 1 in the two store
instructions — recall that the SM213 machine multiplies this value by four to get the offset it uses).

What remains is to show how these local stacks are created and freed and thus how we ensure at runtime that the
register r5 always points to the right spot: the beginning of the currently executing method’s local scope.

2.8.1 Local Scopes and the Runtime Stack

As a concept, local scopes are much like objects, as we have seen. They could, in fact, be allocated from the heap just
as objects are. The only reasons not to do this are (1) that there is an alternative that has better runtime performance

49

and (2) that it is very important that method invocation be as fast as possible because it is frequent, particularly in
object-oriented-style programs where each method is small by design.

The key thing to notice about local scopes is that, unlike other objects, they are deallocated in exactly the reverse order
of their allocation. If a calls b() and b() calls c(), then the local scopes are allocated in the order a→ b→ c and
deallocated c → b → a. This pattern suggested a very simple design for data structure used to store local scopes: a
stack.

Every thread of a program (for now our programs have only a single thread) is allocated a region of memory called its
runtime stack. The stack stores a set of activation frames, one to hold the local scope of every method that has been
invoked but has not yet returned. Activation frames are ordered sequentially on the stack in order of their creation.
By convention the stack grows toward lower addresses. If we stick with our view of memory as an array starting with
address zero on the top, then stacks grow up. Sometimes stacks are drawn the other way, with high addresses on the
top, to emphasize that stacks grow to lower addresses (in this case down) — this is what the textbook does, don’t be
confused by this.

The first few instructions of every method allocate that method’s activation frame by subtracting the frame’s size (a
constant) from the current stack pointer (in r5 in our case). The last few instructions executed by every procedure
release the frame by adding the same number to the stack pointer. If a procedure has no local variables, then these two
steps are left out.

For example, let’s consider the following Java class taken from S8-locals.java.

public class A {
public static void b () {

int l0 = 0;
int l1 = 1;

}
}

public class Foo {
static void foo () {

A.b ();
}

}

And the corresponding C snippet S8-locals.c.

void b () {
int l0 = 0;
int l1 = 1;

}

void foo () {
b ();

}

The SM213 instructions for the procedure b() are the following (taken from S8-locals.s).

.pos 0x300
b: deca r5 # sp -= 4 for ra

st r6, (r5) # *sp = ra

50

deca r5 # sp -= 4 for l1
deca r5 # sp -= 4 for l0
ld $0, r0 # r0 = 0
st r0, 0x0(r5) # l0 = 0
ld $0x1, r0 # r0 = 1
st r0, 0x4(r5) # l1 = 1
inca r5 # sp +=4 to discard l0
inca r5 # sp +-4 to discard l1
ld (r5), r6 # ra = *sp
inca r5 # sp += 4 to discard ra
j (r6) # return

2.8.2 Saving the Return Address

In Section 2.7.6 we encounter the question of what to do with the current value of the return-address register (i.e., r6)
when making a new procedure call, which needs to place its own return address in r6. The solution is to save this as
part of the current method’s scope on the stack.

Thus the complete machine code for calling a procedure follows this outline.

1. Make room for r6 on stack by decrementing stack pointer.

2. Save r6 on stack.

3. Compute new return address and place this in r6

4. Jump to target method.

5. Restore r6 to the value on the stack.

6. Restore stack pointer to previous value by incrementing it.

The SM213 code for these steps show in this sequence that implements the call to b() from foo(), again taken from
S8-locals.s.

.pos 0x200
foo: deca r5 # sp -= 4

st r6, (r5) # *sp = ra
gpc $6, r6 # r6 = pc + 6
j b # call b()
ld (r5), r6 # ra = *sp
inca r5 # sp+=4
j (r6) # return

2.8.3 Arguments and the Return Value

Invoking a method involves a transfer of control and data between two locations in a program, the caller and the callee.
In the preceding sections we have examined the control transfer only. We now turn to the transfer of data arguments
to the callee and the transfer of a return value to the caller.

We’ll use the following Java program (S9-args.java)

51

public class A {
static int add (int a, int b) {
return a+b;

}
}

public class foo {
static int s;
static void foo () {

s = add (1,2);
}

}

and its C equivalent (S9-args.c).

int add (int a, int b) {
return a+b;

}

int s;

void foo () {
s = add (1,2);

}

Return Value

In Java and C methods (and procedures) can return one value to their caller. In C this value is typically returned in a
register. Typically register 0 is used for this purpose; in IA32, register 0 is called %eax. In the SM213 “compiler” we
will use r0. It is entirely up to the compiler to choose a convention; the only requirement is the code machine code
generated for caller and callee both follow the same convention.

Assuming the values of arguments a and b are in registers r0 and r1, respectively, the SM213 implementation of
add () returns their sum to its callers as follows.

6110 # return (r0) = a (r0) + b (r1)
c600 # return

The assembly code.

00000100: 6110 add r1, r0
00000102: c600 j 0x0(r6)

The code code in foo() that calls add() and then stores the value it returns in s is as follows:

gpc $6, r6 # r6 = pc + 6
j add # call add (1,2)
ld $s, r1 # r1 = &s
st r0, (r1) # r1 = add (1,2)

52

Arguments

A method declaration includes the declaration of its formal arguments. These arguments are variables that are con-
tained in by the method’s scope while it is running. Method invocations provide an actual argument value for each the
method’s formal arguments. One of the tasks for the machine instructions that implement the method invocation is to
assign these formal argument values to the formal argument variables. In this way arguments are a bit different from
the local variables of the called method, even though they both reside in the same scope.

There are two alternatives available for passing arguments from caller to callee: through registers or on the stack. It
is up to the compiler to decide which convention to use, or perhaps to use a combination of the two, when it compiles
the code for a method. Subsequent compilation of invocations of that method must then follow the same convention
as the method they call.

Typically small methods with few arguments are best implemented by passing arguments through registers. The
runtime performance of this method is much better than the through-stack alternative, because it avoids the memory-
access cost of copying values into stack memory on the caller side and back out of memory on the callee side. On the
other hand, registers can be a scarce resource (particularly in IA32, which has only six generally available). Through
the stack argument passing is thus favoured for methods with more arguments than available registers or methods that
are large enough that they will need most of the registers to store other values and that run long enough to amortize
the cost argument passing over a longer overall method execution.

Here is the SM213 implementation of add and the call to it from foo that passes values for add’s two arguments
from foo to add in the registers r0 and r1. These are taken from S9-args-regs.s.

The implementation of add is the same as shown in the return-value example above.

The implementation of the call to add adds these two states just before those listed above in the return-value example.

ld $1, r0 # arg0 = 1
ld $2, r1 # arg1 = 2

To pass arguments through the stack, however, requires more work in both add and in foo; taken from S9-args-stack.s.

The following statements are added to add to copy the values of the formal arguments into registers.

ld 0(r5), r0 # r0 = arg0
ld 4(r5), r1 # r1 = arg1

And in foo, instead of the two instructions that copy the values 1 and 2 into registers r0 and r1, respectively, we
have these instructions that precede the call to add.

foo: deca r5 # sp -= 4
st r6, (r5) # *sp = ra
ld $2, r0 # r0 = 2
deca r5 # sp -=4 for arg1
st r0, (r5) # arg1 = 2
ld $1, r0 # r0 = 1
deca r5 # sp -=4 for arg0
st r0, (r5) # arg0 = 1

Notice that the two arguments are pushed on the stack in reverse order, with the value of the right-most argument
pushed first. The reason for this is that when they are subsequently accessed in add, they will be accessed as positive

53

offsets from the stack pointer. And if we want the left-most argument to have the smallest offset, similar to local
variables and instance variables, then the value for this argument must be pushed last.

In addition, these instruction must follow the call to add to discard the two arguments from the stack.

inca r5 # sp += 4 to discard arg0
inca r5 # sp += 4 to discard arg1

Comparing the code between the register- and stack-passing approaches, we see why register-passing typically leads
to faster code. A total of two additional instructions were needed in this example to pass through registers, while
ten instructions were required to pass through the stack. Of even greater significance is that passing through registers
require zero memory accesses, while passing through the stack requires four, two for each argument. These differences
can be very significant for small procedures that are called frequently.

2.8.4 Arguments and Local Variables Together

In general, the local scope of a method includes its local variables, its formal arguments and temporarily saved regis-
ters, such as r6, the saved return address. The caller of a method is responsible for creating the part of the new frame
that contains the formal arguments, by pushing on to the stack the actual values of those arguments, and subsequently
discarding those arguments from the stack when the called method returns. The called method is responsible for al-
locating space on the stack for local variables and for freeing this stack space just before the method returns. This
method is also responsible for saving registers such as r6 just before it calls another procedure.

Consider the procedure below that has both locals and arguments and assume that arguments for this procedure are
passed on the stack.

void foo(int i, int j) {
int k;
int l;

}

If this is the current procedure then its frame is on the top of the stack and thus the register r5 stores its memory
address. The frame, along with an instruction that reads the variable at each location, looks something like this.
Notice that the offset to the first argument depends on the number of local variables (and their size) declared by the
method; both of these values are specified statically and so the compiler always knows the offset to every local and
every argument.

local variable 0: k ld 0x0(r5), r0
local variable 1: l ld 0x4(r5), r0

formal argument 0: i ld 0x8(r5), r0
formal argument 1: j ld 0xc(r5), r0

If this is not the current procedure, the frame includes its saved value of the return address r6 and r5, the stack
pointer, does not store its address. The frame would thus look like this.

saved r6 (return address)
local variable 0: k
local variable 1: l

formal argument 0: i
formal argument 1: j

54

2.8.5 The First Stack Frame

At the bottom of every stack frame is the procedure that calls the first application method for that thread. In a single-
threaded Java program, the first application method is always the static void main (String args[])
method of some class. Below this stack frame is a special procedure called start (or possibly crt0 or crt1)
that initializes the stack pointer, calls the first method and stops the current thread (in our case by halting the proces-
sor) when that method (e.g., main) returns.

Here is a SM213 ISA implementation of a start method that places a stack of ten integers (40 bytes) starting at the
1 KB point of memory. The initial location of the stack pointer is at the bottom of this chunk (i.e., at address 0x1024
+ 4 = 0x1028). It is taken from S9-args-stack.s (or S9-args-regs.s).

.pos 0x100
start: ld $0x1028, r5 # initialize stack pointer

gpc $6, r6 # ra = pc + 6
j foo # call foo()
halt

And here, for completeness, is S9-args-stack.s in its entirety.

.pos 0x100
start: ld $0x1028, r5 # initialize stack pointer

gpc $6, r6 # ra = pc + 6
j foo # call foo()

halt
.pos 0x200
foo: deca r5 # sp -= 4

st r6, (r5) # *sp = ra
ld $2, r0 # r0 = 2
deca r5 # sp -=4 for arg1
st r0, (r5) # arg1 = 2
ld $1, r0 # r0 = 1
deca r5 # sp -=4 for arg0
st r0, (r5) # arg0 = 1
gpc $6, r6 # r6 = pc + 6
j add # call add (1,2)
inca r5 # sp += 4 to discard arg0
inca r5 # sp += 4 to discard arg1
ld $s, r1 # r1 = &s
st r0, (r1) # r1 = add (1,2)
ld (r5), r6 # ra = *sp
inca r5 # sp += 4 to discard r5
j (r6) # return

.pos 0x300
add: ld 0(r5), r0 # r0 = arg0

ld 4(r5), r1 # r1 = arg1
add r1, r0 # return (r0) = a (r0) + b (r1)
j (r6) # return

.pos 0x400
s: .long 0x00000000 # s

55

.pos 0x1000
.long 0x00000000
.long 0x00000000
.long 0x00000000
.long 0x00000000
.long 0x00000000
.long 0x00000000
.long 0x00000000
.long 0x00000000
.long 0x00000000
.long 0x00000000

Exercises

2.1 For each of the following, indicate whether the value is know statically or dynamically by placing the work static
or dynamic next to each.

(a) The address of a global variable in C:

(b) The address of an element of a static array in Java:

(c) The address of an instance variable in Java.

(d) The offset of an instance variable from the beginning of the object that contains it in Java:

(e) The address of the code that implements a return statement.

(f) The address of the instruction that executes immediately after a return statement.

(g) The value of &a.i where a is a global variable in the C program with the following declaration.

typedef struct { int i; } A;
A a;

(h) The value of &a->i where a is a global variable in the C program with the following declaration.

typedef struct { int i; } A;
A* a;

(i) The address of a local variable.

(j) The position of a local variable in its activation frame.

(k) The code address of a static method.

(l) The code address of an instance method (i.e., a method that is not declared static).

2.2 What is the value of i after the following C code executes?

int a[10] = {0,1,2,3,4,5,6,7,8,9};
int i = *(&a[3] + 2 + *(a+1));

2.3 Consider the following C snippet. All three variables are global variables.

int i;
int a[i];
int * b;
void foo () {

a[i] = b[3];
}

56

Give the SM213 instructions that implement the statement a[i] = b[3];. Give all variables allocated by the
compiler some arbitrary address and clearly comment your code.

2.4 Java and C deallocate dynamically created objects (i.e., heap-allocated objects) differently. Briefly describe the
approach each uses. Give one significant benefit of each approach.

2.5 What is a memory leak? Give an example of a type of program where it could be a big problem. State whether
Java solves this problem entirely, somewhat or not at all. Justify your answer.

2.6 Would it be possible to implement a compiler that used the heap, instead of the stack, to store activation frames?
Give one important drawback of this approach and explain.

2.7 What is the difference between pc-relative and absolute jumps? Give one advantage of each. Explain.

2.8 Java and C do not allow the size of local variables or instance variables to be determined at runtime. How does
this restriction simplify the machine instructions the compiler generates for accessing these variables?

57

58

Chapter 3

Talking to I/O Devices

Here is a brief outline of this section of the course. Detailed reading is in the textbook.

• Programmed IO and DMA.

• Interrupts

• Implementing interrupts in CPU: Fetch, Decode, Execute, Interrupt Check.

• Handling transfer of control, interrupt jump table.

59

60

Chapter 4

Virtual Processors

• The virtual processor hides asynchrony introduced by interrupts.

• What is thread state.

• Switching between threads.

• Blocking a thread for IO. Why are threads implemented by the operating system?

• Scheduling policies

61

62

Chapter 5

Virtual Memory

5.1 Translation

• VM needed so that multiple programs can be loaded in memory at the same time and still allow compiler to
control the address of static code and data.

• Every address in instruction is a virtual address.

• Memory still only understands physical addresses.

• On every memory access, CPU hardware must translate virtual address into physical address.

• Translations handled by checking a direct-map data structure that is indexed by virtual page number. Each entry
stores the physical memory frame number for that virtual page. You need to know how this works.

• Before the page table is checked, there is actually a check in an on-CPU-chip translation cache, called the TLB.
Translations for recently accessed pages are stored in the TLB, but its quite small. We’ll ignore the TLB in this
class. More about it in 313.

• Physical memory and virtual address spaces divided into largish chunks, called pages, in order to keep size of
page table that translates virtual to physical addresses small. Pages are usually 4-KB (4096 Bytes).

• Each entry in the page table is called a ”page table entry”, PTE.

• On Intel x86 CPUs, the physical address of the current page table is stored in a special CPU register, called the
”page table base pointer” PTBR. It is readable and writable from software by a special, privileged instruction.

• An address space is defined by a unique page table. A process is an address space together with a set of threads
that run in that address space (and other operating-system-managed resources allocated by those threads).

• A context switch is a transfer of control between two threads from different processes. It is implemented by
the operating system and involves a thread switch, described earlier, plus page table change. On Intel x86 this
page table change is implemented by changing the value of the PTBR set it to point to the page table of the new
process.

63

5.2 Protection

• Each PTE stores protection information for pages: whether page is readable, writable or executable and whether
the page is a system page or a user page.

• The translation hardware checks permission on every access when getting virtual address. If there is an error,
the hardware raises a ”memory protection fault” exception.

• The CPU runs in either ”user” or ”kernel mode. The current mode of the CPU is determined by the value in a
special CPU register called the ”isModeSystem” register. Think of this as a single bit. If its 0 then the processor
is in ”user” mode. If its 1 then then the processor is in “system“ or “kernel” mode.

• The isModeSystem register can be set and cleared from software by a special, privileged instruction. This
instruction can only be executed, however, then the processor is running in kernel mode.

• Certain privileged instructions can only be executed in kernel mode. For example, instructions that read and
write the PTBR.

• The only way a user-mode program can switch into kernel mode is by making a protected call to the operating
system by means of a trap instructions.

• Trap instructions are like indirect procedure calls, with two differences. First the hardware temporarily sets
the kernel register to 1 for the duration of the call. Second, the trap jumps indirectly through a branch table
created by the operating system when it boots. The base address of this branch table is stored in a privileged
CPU registers, settable only by a special instruction executed in kernel mode. The user- mode software specifies
an branch-table index value (the system-call number). The procedures listed in this branch table comprise
the public interface of the operating system, much like in Java, except that here the encapsulation of the OS
implementation is provided by hardware.

• The CPU hardware handles exceptions in a manner pretty much the same as traps. Exceptions include faults like
divide-by-zero, page faults, memory protection faults etc. The hardware predefines an exception number for
each exception. The CPU hardware stores a base pointer into a jump table for exceptions indexed by this value.
The operating system initializes this jump table and the CPU register that points to it, when it boots. Each entry
is the procedure address of an OS procedure.

5.3 Demand Paging

Demand paging is not covered until 313, so you can ignore the follwing:

• PTE’s have a isValid flag that is 1 if and only if that PTE stores a valid mapping.

• When the VM translation hardware encounters PTE with isValid == 0, it raises a page-fault exception that
transfers control to an operating system procedure as specified by the exception jump table.

• The operating system determines whether the virtual-page number that is translated by this PTE is valid by
inspecting the memory map that it stores for this process.

• The memory map is a list with an entry for each distinct region of the processes virtual address space. For
example, a process will typically have at least for map entries, for: code, global variables, the heap and the
stack. Each map entry describes the beginning and ending virtual-page number of the region it describes and
lists a backing file in which pages of the virtual address spaces are stored when they are not in physical memory.

64

• On a page fault, the OS this map. If the faulted VPN is not covered by any map entry, then the OS aborts the
faulted thread with a memory-address error (e.g., segmentation violation or bus error). If it does find a matching
map entry, it allocates a free physical page frame, initiates a transfer from the page’s backing file, and updates
the PTE to map the page when this disk IO completes. This process is called demand paging, because pages of
the program are brought into memory on demand when programs access them.

• The operating system can removes pages from to make room for new ones. To do this it must first write dirty
pages back to their backing file. The hardware sets the dirty flag in a page’s PTE each time an instruction writes
to the page. The OS periodically writes dirty pages to the backing file and clears this flag. Any page with dirty
== 0 has exactly the same value in memory as in the backing file and so the in-memory version can be discarded
at any time. If the program subsequently access the page, a page fault occurs and the OS will transfer the page
back to memory from the backing file.

65

66

Chapter 6

Synchronization

Managing concurrency involves two things:

1. Exploiting concurrency by creating multiple threads (or processes) that can be run concurrently. This is impor-
tant when the system has multiple processors, when there are more runnable tasks than processors and we want
to ensure fairness among them, and when threads block to wait for the completion of asynchronous events like
reading from the disk or network.

2. Control concurrency by synchronizing among threads when necessary to ensure mutual-exclusive access to
critical sections (i.e., code executed by multiple threads that accesses shared variables) and to allow threads to
block on a condition that is signalled by another thread.

6.1 Implementing Synchronization

Consider mutual exclusion. The idea is to ensure that one thread enters the critical section at a time. One way to
implement this mutual exclusion is to require that a thread acquire a lock before entering the section and to release the
lock when it exits. The lock implementation must then ensure that a most one thread holds a particular lock at a time.

6.1.1 A Simple and Broken Spinlock

Here is the simplest thing we might try.

int lock;

void acquire_lock (int* lock) {
while (*lock==1) ;

*lock = 1;
}

void release_lock (int* lock) {

*lock = 0;
}

67

The idea here is that the lock is held when its value is 1 and free otherwise. To acquire a lock we spin reading the lock
variable until it free. We then exit the loop and set the lock to indicate that it is held. The acquire_lock procedure
does not return until the caller holds the lock.

This code won’t work, however, because the read and write accesses to *lock in acquire_lock are not atomic.
We say that a sequence of operations is atomic only if the instructions are executed as a single, indivisible unit, with
not intervening accesses allowed. The problem here is that if two threads are racing to acquire the lock — that means
they are both trying to get it at very nearly the same time — then the following order of operations is possible.

1. thread 0 reads *lock and gets 0

2. thread 1 reads *lock and gets 0

3. thread 0 writes *lock to 1 and returns

4. thread 1 writes *lock to 1 and returns

In this case both threads now think they have acquired the lock and we thus do not have mutual exclusion.

The solution requires a change to the memory system and a new instruction in the ISA. We need a single instruction
that will atomically read a memory location and write a new value there. This style of synchronization instruction is
referred to by the general term read-modify-write instruction. We’ll look at the most common and simplest of these:
test-and-set.

6.1.2 Test-and-Set Spinlocks

This new hardware instruction will do the following atomically. The semantics are given use C code, but the instruction
must be implemented in hardware.

int test_and_set (int* lock) {
int initial_value = *lock;

*lock = 1;
return initial_value;

}

In the SM213 Machine Simulator, this instruction might be implemented as follows, assuming that insOp0 names a
register that stores the memory address of the lock and that insOp2 is the destination register, where mem.lock ()
and mem.unlock () lock and unlock the entire memory so that the subsequent instructions perform atomically —
this is sort of how these instructions are implement and does emphasize (and exaggerate a bit) why synchronization
instructions are slower than normal memory read and write.

mem.lock ();
reg[insOp2] <= mem[reg[insOp0]];
mem[reg[insOp0]] <= 1;
mem.unlock ();

Now to implement the spinlock, we have this code.

int lock;

68

void acquire_lock (int* lock) {

while (test_and_set (lock) == 1) ;
}

void release_lock (int* lock) {

*lock = 0;
}

Test-and-Test-and-Set Spinlocks

There is a problem with the previous example. The problem is that test_and_set and other synchronization
operations are very slow compared to other memory operations and they slow all concurrent accesses to memory, even
those from other threads. It is unavoidable that we call test_and_set at least once to acquire a lock, in order to
avoid the race condition described above in which two threads ended up acquiring the lock. However, in this case
we repeated use this slow instruction, in a tight loop, waiting for the lock to be released. In doing so, we slow the
progress of the thread that is currently holding the lock, since presumably it will want to access memory too, and we
thus extend the amount of time the lock is held by that thread and delay the time until we can acquire the lock.

The solution is first check to see whether the lock is held using a standard memory read (load) instruction, which will
be fast compared to test_and_set and to then only call test_and_set when the initial cheap read sees a value
of 0, thus indicating that the lock might be free.

Here is the code:

int lock;

void acquire_lock (int* lock) {
do {

while (*lock==1) ;
} while (test_and_set (lock) == 1);

}

void release_lock (int* lock) {

*lock = 0;
}

In this case, acquire first spins using the fast read until it sees that the lock is free. It then uses the slow test_and_set
to attempt to acquire the lock. If racing with another thread, however, this step may fail (i.e., the other thread may win
the race and get the lock ahead of us), in which case the loop repeats this process spinning with the fast read until the
lock appears free again.

6.1.3 Implementing Blocking Locks

Spinlocks are good for situations where locks are not held very long and thus where waiters don’t have to spin long.
In these cases, in fact, spinning is the best choice, because it avoids the overhead of doing the alternative, blocking the
waiting thread until the lock becomes available.

But spinlocks should not be used for tasks where the lock must be held for a longer period of time and where it is
possible that the thread holding the spinlock could be preempted or could block (e.g., on IO for example). In these
cases, a blocking lock should be used.

69

With blocking locks, if a thread attempts to acquire a lock that is currently held by another thread, the waiting thread
is suspended until the lock is released. This blocking allows the CPU to run other threads, if there are any available to
run.

Implementing a blocking lock, however, requires using a separate spinlock to provide for mutual exclusive access to
the data structures that implement the blocking lock. Every blocking lock thus involves two locks: a blocking lock that
application threads use to synchronize and a spinlock that the lock implementation uses to ensure mutually-exclusive
access to the data structures that implement the blocking lock. This spinlock is only held while updating these data
structures in the acquire_blocking and release_blocking procedures. It is not held while the application
is in its critical section that is protected by the blocking lock.

Here is an example of a simple blocking lock implementation.

Spinlock sysLock;

typedef struct {
int held;
Queue waiters;

} BLock;

void acquire_blocking (BLock* lock) {
acquire_spinlock (&sysLock);

if (lock->held) {
tcb = get_thread_state ();
enqueue (lock->waiters, tcb);
dequeue (readyQueue, tcb);
set_thread_state (tcb);

} else
lock->held = 1;

release_spinlock (&sysLock);
}

void release_blocking (BLock* lock) {
acquire_spinlock (&sysLock);

tcb = dequeue (lock->waiters);
if (tcb)

queue (readyQueue, tcb);
lock->held = 0;

release_spinlock (&sysLock);
}

70

Appendix A

Outline and Reading List

Description Companion Text 2ed Text 1ed
0 Introduction 1, 2.1
1a Numbers and Memory 2.2 3.1-3.4, 3.9.3 3.1-3.4, 3.10
1b Static Scalars and Arrays 2.3, 2.4.1-2.4.3 3.8 same
1c Instance Variables and Dynamic Allocation 2.4.4-2.4.5, 2.6 3.9.1, 9.9, 3.10 3.9.1, 10.9, 3.11
1d Static Control Flow 2.7.1-2.7.3, 2.7.5 3.6.1-3.6.5 same
1e Procedures and the Stack 2.8 3.7, 3.12 same
1f Dynamic Control Flow, Polymorphism and Switch 2.7.4, 2.7.7-2.7.8 3.6.7, 3.10 3.6.6, 3.11
2a IO Devices, Interrupts and DMA 8.1, 8.2.1, 8.5.1-8.5.3 same
2b Virtual Processors (Threads) 12.3 13.3
2c Synchronization 8 12.4-12.6 (skim 12.7) 13.4-13.5 (skim 13.7)
2d Virtual Memory 5 9.1-9.2, 9.3.2-9.3.4 10.1-10.2, 10.3.2-10.3.4
2e Processes TBD TBD TBD

71

72

Appendix B

Installing the Simple Machine in Eclipse

These are the instructions for loading the 213 Simple Machine. To load the 313 code, follow these instructions, but
globally substitute 313 for 213.

To load the simple machine into Eclipse from the course distribution, you have two choices. The straightforward way
is to use the pre-made Eclipse projects (options 1A, 2, 3A).

Or, if you want to learn more about how everything works (Eclipse, the SM213 simulator infrastructure, and running
the reference implementation yourself), you can do it the more complex way. You’ll create your own Eclipse project,
and add the jar and zip files to it yourself, be able to browse the full source code of the simulator, and can run the
reference implementation from outside of Eclipse (options 1B, 2, 3B).

1A: Download and load Pre-Packaged Simple Machine Project into Eclipse

These steps load up Eclipse with two pre-packaged Eclipse projects, 213 and sm213_ref.

1. Download the file sm213-eclipse.zip.

2. Select ”Import ...” from the Eclipse menu. In the ”Import” popup dialog, in the ”Select an import source:”
section, expand the ”General” folder and select the ”Existing Projects into Workspace” option
that appears, then click the ”Next >” button at the bottom.

3. Click the ”Select archive file:” radio button, click the ”Browse” button on this line, navigate in your
filesystem to the distribution file called sm213-eclipse.zip that you downloaded from the course website,
select this file and click the ”Open” button.

4. Ensure that both projects have their checkboxes selected in the ”Projects:” pane and click the ”Finish”
button.

2: Build and Run the Simple Machine in Eclipse

1. Right-click (Control-click on the Mac) on the 213 project and select ”Run As”→ ”Java Application”
from the Eclipse menu.

73

2. Click on the line labeled ”SimpleMachine$Sm213Student” in the ”Matching Items:” pane to select
it and click on ”OK”.

3. Subsequently, you can just select ”Run” from the Eclipse menu to build and start the simulator.

3A: Run the Reference Simple Machine Implementation In Eclipse

1. Same as step 2, but use project sm213_ref and select ”SimpleMachine$Sm213”.

This section is an alternative to the previous page. Follow these steps only if you want to create the full simulator
Eclipse project yourself.

1B: Add the Simple Machine to your own Eclipse Project

1B.1: Load the Simple Machine Project into Eclipse

1. Unpack Simple Machine distribution zip file called sm-student-213.zip to reveal the following contents
in the directory named sm-student-213:

• SimpleMachine213.jar a stand-alone executable jar fully implements the sm213 ISA. The classes
in this jar have been obfuscated so that you can not decompile them to get the solution.

• SimpleMachineStudent.jar a jar file that contains all but the solution classes. These classes are
not obfuscated. This is the jar file that you include in the classpath for your solution.

• SimpleMachineStudentDoc213.zip java doc.

• SimpleMachineSrc.zip full source for all classes but the solution, you will ignore virtually all of
these, paying attention only to the Memory and CPU classes.

2. Select ”New→ Java Project” from the Eclipse menu.

3. Enter a name for the project (e.g., 213) and click the ”Next >” button.

4. On the ”Java Settings” dialogue that is now displaying, click the ”Libraries” tab.

5. Click the ”Add External JARS...” button.

6. Navigate to the file SimpleMachineStudent.jar in the directory sm-student-213 and select it.

74

7. In the ”JARs and class folders on build path:” list, click the triangle next to the line listing
”SimpleMachineStudent.jar ...” to expand it.

8. Double click ”Source attachment”, click ”External File...”, navigate to the file SimpleMachineStudentSrc.zip
in the directory sm-student-213, select it and click ”OK”.

9. Double click ”Javadoc location”, click the ”Javadoc in archive” radio button, click ”Browse...”
next to ”Archive path:”, navigate to SimpleMachineStudentDoc213.zip in the directory sm-student-213,
select it, and click ”OK”.

10. Click the ”Finish” button.

1B.2: Add Simple Machine Source files to Eclipse

1. Select your project’s ”src” folder.

2. Select ”Import” from the Eclipse menu to display the Import dialogue.

3. Expand the ”General” line in the ”Select an import source:” area, click ”Archive File”, and
click the ”Next >” button.

4. Click the ”Browse” button, navigate to the file SimpleMachineStudentSrc.zip in the directory sm-student-213,
and click ”Open”.

5. Clicking recursively on expansion triangles, reveal the directory arch/sm213/machine/student.

6. Click the ”Deselect All” button to uncheck all boxes in the directory pane.

7. Check the single box next to student and click on the ”Finish” button to import this source package into
your src folder.

8. The two files you will edit, CPU.java and MainMemory.java, are now in the arch.sm213.machine.student
package in the src folder of your project.

2: Build and Run the Simple Machine in Eclipse

1. Click on your project and select ”Run As”→ ”Java Application” from the Eclipse menu.

2. Click on the line labeled ”SimpleMachine$Sm213Student" in the "\verbMatching Items:=” pane
to select it and click on ”OK”.

3. Subsequently, you can just select ”Run” from the Eclipse menu to build and start the simulator.

3B: Run the Reference Simple Machine Implementation Yourself

1. At the command line navigate to the directory where you unpacked the file sm-student-213.zip and type
”java -jar SimpleMachine213.jar”. On some systems, you can just navigate to the folder containing
this file and double click it.

75

76

Appendix C

SM213 Instruction Set Architecture

SM213 machine language instructions are 2 or 6 bytes. The first 2 bytes are split into 4 hex digits of 4 bits each for
the opcode and the three operands: OpCode, Op0, Op1, Op2. There are 16 possible opcodes, numbered ’0’ through
’e’ in hex. The meaning and use of the three operands is different for each opcode, and is given in the first table using
these mnemonics: for registers 0-7, ’s’ for source, ’d’ for destination, ’i’ for index. The mnemonic ’p/o’ for offsets
represents an actual number, not a register, and may use either one or two hex digits. Offsets indicated with ’o’ in
assembly are stored in compressed form as ’p’ in machine code (meaning o ∗ 2 or o ∗ 4, as in the semantics column).
The placeholder ’-’ means the hex digit is ignored. The second table contains examples.

Operation Machine Language Semantics / RTL Assembly
load immediate 0d-- vvvvvvvv r[d]← vvvvvvvv ld $vvvvvvvv,r1
load base+dis 1psd r[d]← m[(o = p× 4) + r[s]] ld o(rs),rd
load indexed 2sid r[d]← m[r[s] + r[i]× 4] ld (rs,ri,4),rd
store base+dis 3spd m[(o = p× 4) + r[d]]← r[s] st rs,o(rd)
store indexed 4sdi m[r[d] + r[i]× 4]← r[s] st rs,(rd,ri,4)
halt f000 (stop execution) halt
nop ff00 (do nothing) nop
rr move 60sd r[d]← r[s] mov rs, rd
add 61sd r[d]← r[d] + r[s] add rs, rd
and 62sd r[d]← r[d] & r[s] and rs, rd
inc 63-d r[d]← r[d] + 1 inc rd
inc addr 64-d r[d]← r[d] + 4 inca rd
dec 65-d r[d]← r[d]− 1 dec rd
dec addr 66-d r[d]← r[d]− 4 deca rd
not 67-d r[d]←!r[d] not rd
shift 7doo r[d]← r[d] << oo shl oo, rd

r[d]← r[d] >> −oo (if oo is negative) shr -oo, rd
branch 8-pp pc← (aaaaaaaa = pc + pp× 2) br aaaaaaaa
branch if equal 9rpp if r[r] == 0 : pc← (aaaaaaaa = pc + pp× 2) beq rr, aaaaaaaa
branch if greater arpp if r[r] > 0 : pc← (aaaaaaaa = pc + pp× 2) bgt rr, aaaaaaaa
jump b--- aaaaaaaa pc ← aaaaaaaa with .pos aaaaaaaa label: j label
get program counter 6fpd r[d]← pc + (o == 2× p) gpc $o, rd
jump indirect cdpp pc ← r[r] + (o = 2× pp) j o(rd)
jump double ind, b+disp ddpp pc ← m[(o = 4× pp) + r[r]] j *o(rd)
jump double ind, index edi- pc ← m[4× r[i] + r[r]] j *(rd,ri,4)

77

Operation Machine Language Example Assembly Language Example
load immediate 0100 00001000 ld $0x1000,r1
load base+dis 1123 ld 4(r2),r3
load indexed 2123 ld (r1,r2,4),r3
store base+dis 3123 st r1,8(r3)
store indexed 4123 st r1,(r2,r3,4)
halt f000 halt
nop ff00 nop
rr move 6012 mov r1, r2
add 6112 add r1, r2
and 6212 and r1, r2
inc 6301 inc r1
inc addr 6401 inca r1
dec 6501 dec r1
dec addr 6601 deca r1
not 6701 not r1
shift 7102 shl $2, r1

71fe shr $2, r1
branch 1000: 8004 br 0x1008
branch if equal 1000: 9104 beq r1, 0x1008
branch if greater 1000: a104 bgt r1, 0x1008
jump b000 00001000 j label and elsewhere .pos 0x1000 label:
get program counter 6f31 gpc $6, r1
jump indirect c102 j 8(r1)
jump double ind, b+disp d102 j *8(r1)
jump double ind, index e120 j *(r1,r2,4)

78

