

CPSC 213: Assignment 9
Due: Wednesday, March 28, 2012 at 6pm.

Late assignments are accepted until Friday, March 30 at 6pm with a 25% penalty per day (or
fraction of a day) past the due date. This rule is strictly applied and there are no exceptions.

Goal
In this assignment we extend the uthread package to include synchronization. The new
version of uthread.c includes a complete implementation of spinlocks and a partial
implementation of monitors and condition variables. You will complete the implementation and
then use these primitives to solve a few problems.

Notes
The uthreads package runs on Intel x86 machines running Linux, Mac OS, or Cygwin. You
can use the department Linux machines by connecting to linXX.ugrad.cs.ubc.ca, where
XX can be 01 through 25.

To compile on Linux or Cygwin, it is necessary to explicitly include the pthread library by
adding “-lpthread” option to the gcc command line.

Requirements
Here are the requirements for this week’s assignment.

1. Read and comment the implementations of spinlocks and monitors, i.e., the top and
bottom parts of the uthread.c file.

2. Implement a multiple-reader, single-writer monitor. Recall that this monitor can be in one
of three states: (a) held exclusively by a writer, (b) being read concurrently by one or more
readers, or (c) free. Writers enter the monitor using the uthread_monitor_enter
function and must wait for the monitor to be in the free state before entering. Readers
enter the monitor using the new uthread_monitor_enter_read_only function
and can enter the monitor if it is in either the reader or free states (i.e., (b) or (c) above),
but must wait if the monitor is currently held by a writer. You will implement the
uthread_monitor_enter_read_only and make small changes to the monitor
data structure and the existing monitor procedures. Use uthread_monitor_enter as
a guide; uthread_monitor_enter_read_only will be almost identical. The main
difference is that uthread_monitor_enter_read_only does not set the monitor
holder field (you will need to indicate readers are in the monitor some other way).

3. Test your new monitor using the provided reader_writer_test.c. The test consists
of four reader threads and one writer thread accessing two shared integers. It has three

modes of execution: non-synchronized, monitor-synchronized, and reader-writer-monitor-
synchronized. For sufficiently large values of the count command-line option, the non-
synchronized version will fail with read, write or end errors. Ensure the correctness of
your new monitor by ensuring that you do not get any of these errors when you run it in
the reader-writer mode. If you can get access to a multi-core processor (e.g., the
department Linux machines have quad-core processors), you can tell if your
implementation is really allowing multiple readers by timing the normal-monitor and
reader-writer-monitor modes of execution. The reader-writer should run twice as fast,
more or less.

4. Explain why the reader-writer mode of the reader_writer_test should run twice as
fast as the pure-monitor mode, even if that is not what you saw with your implementation.

5. Implement condition variables. Their state is stored in the struct uthread_cv and
they have four operations uthread_cv_create, uthread_cv_wait,
uthread_cv_notify, and uthread_cv_notify_all. Their implementations
will be quite similar to that of monitors in that, for example, they will be implemented by
a core data structure protected by a spinlock and that they will block and unblock threads.

6. Test your implementation using a “single processor” first (by setting the argument 1 to the
uthread_init function) and a simple test program with two threads – one that waits
and one that notifies it.

7. Modify the provided bounded-buffer.c to synchronize producers and consumers
using monitors and condition variables. The queue will be shared by producer and
consumer threads, so use a monitor to synchronize. The queue is fixed size and so it is
possible that an enqueue operation will find the queue full and thus have no room for a
new element. Use a condition variable to block an enqueue on a full queue until a
dequeue operation frees space for the new element. Similarly, a dequeue operation
might find the queue empty. Use another condition variable to block a dequeue on an
empty queue until an enqueue operation provides a new element.

8. Test your implementation using a “single processor” (by setting the argument 1 to the
uthread_init function) and four threads: two “producers” that loop enqueueing
integers and two “consumers” that loop dequeueing integers and printing them.

9. Test your implementation with 2 and 4 “processors” by changing the argument to
uthread_init. If you can run this on a real multi-processor (e.g., a quad-core CPU),
that is great. But, you can also run the multi-threaded version on a uniprocessor. In this
case, the multiple kernel threads created in uthread_init will be multiplexed across
the single processor by the operating system using its scheduling policy (i.e., preemptive,
round-robin) which provides a sufficient emulation of a true multi-processor for testing
purposes.

10. Explain the differences you see among the two multi-processor executions and the uni-
processor execution from question 5.

Material Provided
The files uthread.h, uthread.c, reader_writer_test.c, and
bounded_buffer.c are provided in the archive file code.zip.

What to Hand In
Use the handin program. The assignment directory is a9. Please hand in exactly the following
files with the specified names. Do NOT hand in executable or object (.o) files, or a README in
formats like .doc or .rtf.

1. uthread.c with comments for spinlocks and monitors, as well as implementations of

functions for the condition variable and the single-writer, multiple-reader monitor, as
specified in Requirement 2 and 5

2. bounded_buffer.c that uses the monitor and condition variable to synchronize the
shared queue and the enqueue and dequeue operations, as specified in Requirement 7

3. README.txt that contains:

 header with your name, student number, four-digit cs-department undergraduate id
(e.g., the one that’s something like a0b1)

 statement that “I have read and complied with the collaboration policies” at
http://www.ugrad.cs.ubc.ca/~cs213/winter11t2/policies.html

 description of your testing results of the monitor implementation, as specified in
Requirement 3

 answer (i.e., why the reader_writer_test runs faster in the reader-writer
monitor mode than in the pure-monitor mode) to Requirement 4

 description of your testing result of the condition variable implementation, as
specified in Requirement 6

 description of your single-processor testing result, as specified in Requirement 8

 description of your multi-processor testing results, as specified in Requirement 9

 explanation for the differences you see between the single-processor execution and
the multi-processor executions, as specified in Requirement 10

