

CPSC 213: Assignment 5
Due: Monday, February 27 at 6pm.

Late assignments are accepted until Wednesday, February 29 at 6pm with a 25% penalty per day
(or fraction of a day) past the due date. This rule is strictly applied and there are no exceptions.

Goal
The goal of this assignment is to examine how programs use the runtime stack to store local
variables, arguments and the return address. You will begin by examining three snippets. Then
you will write an SM213 assembly program based on C code, with a vulnerability from a bug.
Then you will mount a buffer-overflow (stack smash) attack on that SM213 program, by creating
an input string that will take over execution. Finally, you will test your understanding and
assembly-reading skill by examining two SM213 assembly-language programs in the simulator
to determine what they do, and explain it in English and by producing equivalent C code.

Code Snippets Used this Week
As explained in detail below, you will use the following code snippet this week. There are C,
Java and SM213 Assembly versions for each snippet.
• S7-static-call-{reg,stack}
• S8-locals
• S9-args-{regs,stack}

Requirements
Here are the requirements for this week’s assignment.

1. Carefully examine the execution of S7-static-call-stack.s in the simulator and
compare it to S7-static-call-regs.s. Document what you see. Describe the
difference between the two approaches. List one benefit for each approach.

2. Carefully examine the execution of S8 in the simulator. Document what you see.

3. Carefully examine both versions of S9 in the simulator. Document what you see. Describe
the difference between the two approaches. List one benefit for each approach.

4. Write a simple SM213 assembly-language program that copies a 0-terminated array of
integers (using Snippets S8 or S9 as a guide).

 The source array should be stored in a global variable. The destination array should be a
local variable (i.e., stored on the stack). You need two procedures: one that copies the
array, one that initializes the stack pointer and calls the copy procedure. Ensure that the

array-copy procedure saves r6 (the return address) on the stack in its prologue and
restores it from the stack in its epilogue.

 Here is a C template for the program.

 int src[2] = {1,0};
 void copy() {
 int dst[2];
 int i = 0;
 while (src[i] != 0) {
 dst[i] = src[i];
 i++;
 }
 }
 void main () {
 copy ();
 }

5. Mount a buffer overflow attack on this program to get it to set the value of every register
to -1 and to then halt, by changing only the value of src and the size of src.

Recall that what you are doing here is what most virus writers do to exploit buffer-
overflow bugs to gain control of programs (i.e., to get those programs to execute their
virus code) and that a real virus writer will have the virus do something more sinister than
just changing the values of registers.

You may NOT directly change the program, or its stack, or any program data except for
the src input when mounting this attack. When thinking about what machine language
commands to include as part of your src data, you might find it easier to first create an
assembly language program and then convert it to machine language, either by hand or by
using the simulator to convert assembly to machine code.

6. Execute the provided SM213 assembly programs A5-a.s and A5-b.s to determine
what they do. Explain their behaviour by both giving an equivalent C program and by
explaining in plain English what simple computation they each perform.

Material Provided
The snippets and mystery programs are provided in the file code.zip.

What to Hand In
Use the handin program. The assignment directory is a5. Please hand in exactly the following
files with the specified names. Do not hand in class files, or your entire Eclipse project, or a
README in formats like .doc or .rtf.

1. buffer-overflow-attack.s that implements the copy procedure and mounts the

buffer-overflow attack as specified by Requirements 4 and 5 above.

2. A5-a.c that gives equivalent C code for A5-a.s for Requirement 6.

3. A5-b.c that gives equivalent C code for A5-b.s for Requirement 6.

4. README.txt that contains:

 header with your name, student number, four-digit cs-department undergraduate id
(e.g., the one that’s something like a0b1)

 statement that “I have read and complied with the collaboration policies” at
http://www.ugrad.cs.ubc.ca/~cs213/winter11t2/policies.html

 Description of the difference between and benefit for the two versions of S7
assembly snippets, as specified by Requirement 1.

 Description of your observation during the execution of S8, as specified by
Requirement 2.

 Description of the difference between and benefit for the two versions of S9
assembly snippets, as specified by Requirement 3.

 Description of each of A5-a.s and A5-b.s (i.e. what they do) in plain English
language, as specified by Requirement 6.

