

CPSC 213: Assignment 10
Due: Wednesday, April 4, 2012 at 6pm.

Late assignments are accepted until Friday, April 6 at 6pm with a 25% penalty per day (or
fraction of a day) past the due date. This rule is strictly applied and there are no exceptions.

Goal
In this assignment you extend the Simple Machine simulator to implement page-based virtual
memory and then observe a test program running with two separate page tables.

Adding Virtual Memory to the Simple Machine
You will use your implementations of MainMemory and CPU from previous assignments and a
new class called VirtualMemoryCPU. A skeleton of this class is provided for you: add the
file VirtualMemoryCPU.java to your Eclipse project in the same directory as the other two
files.

You will implement the method translateAddress of this class, which translates a virtual
address to a physical address. This method needs to read from memory using a physical address
in order to read the page table. To read from memory using a physical address use physMem
instead of the mem used in CPU to read memory. Both mem and physMem implement the same
set of methods; the only difference is that mem uses virtual addresses and physMem uses
physical. The other thing you will need to do is to read the value of the page table base register,
the base physical address of the current page table. This register, which is settable in the
SimpleMachine GUI (bottom left), is read by the statement ptbr.get().

To run the virtual-memory version of the simulator you use a different target (or different
command-line option). The new target is the class SimpleMachine.Sm213VmStudent. If
you select the machine using command-line arguments, change “-a sm213” to “-a sm213-
vm”.

Requirements
Here are the requirements for this week’s assignment.

1. Implement the translateAddress method of VirtualMemoryCPU and test your
implementation. Use a page size of 32 bytes, as already specified in the template code
(much smaller than the 4K page size example presented in lecture).

2. Edit the min.s program you wrote for assignment 4 to use your implementation of
virtual memory, as follows. First, change the locations of your code segments to be the
smallest possible addresses. Next, create a second copy of the data section at a different
position in memory than the first one; again, use addresses that are as low as possible.

Next, create two additional data sections in which you will manually make two page
tables. Each page table should map a different data section, but they should both use the
same code (which you should not have duplicated).

3. Run your version of min.s twice, once using each page table so that each execution uses
a different set of inputs. Look closely at what happens as the program runs. Record your
observations.

Notes

1. A page table is just an array of .long values. It is an array indexed by virtual page
numbers, where the values within it are physical page numbers. That is, when you access
a virtual address that falls within the ith chunk of addresses, the function
translateAddress will use the value of the ith entry in the page table array to
calculate the physical address.
Consider the page size to figure out how large of a chunk of addresses each entry should
handle. Unused virtual pages should be marked as invalid. The table only needs to be
large enough to contain the last valid page-table entry. You do not need to worry about
virtual addresses beyond the end of the page table in this assignment.
You may find it helpful to put a comment after each line documenting both its index (the
vpn), and the virtual address that you intend as the result after the physical address value
is translated.

2. Be careful in your assembly language program with assigning labels. The simulator has a
limitation that can cause confusion. Labels must refer to virtual addresses, because that is
what the CPU uses when it executes your code. However, the addresses you specify
with .pos in the .s file are PHYSICAL addresses. This approach is a programming
expediency as virtual memory is a recent add-on to the simulator.
So, if you put a label on a line of code or a data element whose virtual address is different
from the physical address specified in the .s file your label will have the wrong virtual
address when the program runs. For example, if you copy the data section of your
program and also copy the labels, then the second copy of min, i and a will have the
wrong virtual address and your program will not run.
The solution is to ensure that the code and the first copy of the data have virtual addresses
that are the same as their physical addresses, and to only put labels in the code and the
first copy of the data. The second copy of the data can be at any physical address --- just
don't put any labels next to these .long values.
Alternatively, you can avoid using labels entirely, and use only addresses in your code.

3. Remember that all addresses used within the assembly code are virtual addresses: for
example, ld (r0), r0 would take the address stored in r0, interpret it as a virtual
address, translate the virtual address into a physical address, and the value stored at that
physical address would be loaded into r0. The translation that happens is dependent on
the page table mappings that you specify. Remember that all .pos directives in your
assembly file are physical addresses. Remember that page tables are indexed by vpn and
contain pfns as values.

4. The page table entry has two fields encoded in different bits of a single integer. The top
bit is the valid bit; everything else is the PFN. The two masks that you need to easily

obtain the desired bits are already created for you in the template file: PTE_PFN_MASK
and PTE_VALID_BIT_MASK.

5. For testing, you will set the current page table by setting the ptbr to store the
appropriate base address for each page table in turn. Do this by using the simulator GUI
(bottom left corner) to manually set the ptbr, then doubleclick on the first instruction to
set the PC there (turning it green), and hit Run. To run the second time, manually set the
ptbr again to the address of the other page table, click the first instruction again, and
then hit Run again.

Material Provided
The template for VirtualMemoryCPU.java is in the file code.zip.

What to Hand In
Use the handin program. The assignment directory is a10. Please hand in exactly the following
files with the specified names. Do NOT hand in class files, or your entire Eclipse project, or a
README in formats like .doc or .rtf.

1. VirtualMemoryCPU.java with implementation of translateAddress method,

as specified in Requirement 1. Your test code may be either included in this file, or in a
separate file that you should also include.

2. Your modified min.s assembly file, as specified in Requirement 2.

3. README.txt that contains:

 header with your name, student number, four-digit cs-department undergraduate id
(e.g., the one that’s something like a0b1)

 statement that “I have read and complied with the collaboration policies” at
http://www.ugrad.cs.ubc.ca/~cs213/winter11t2/policies.html

 description of your testing of translateAddress, as specified in Requirement 1.

 description of your observations from running the modified min.s, as specified in
Requirement 3

