Introduction to Computer Systems

Unit 2d
Virtual Memory

Readings for Next Two Lectures

Text

* Physical and Virtual Addressing - Address Spaces, Page Tables - Page
Faults

*2nd edition: 9.1-9.2, 9.3.2-9.3.4
e 1st edition: 10.1-10.2, 10.3.2-10.3.4

Multiple Concurrent Program Executions

So far we have

* a single program

* multiple threads

Allowing threads from different program executions

* we often have more than one thing we want to do at once(ish)

* threads spend a lot of time blocked, allowing other threads to run

* but, often there aren’t enough threads in one program to fill all the gaps
What is a program execution

e an instance of a program running with its own state stored in memory

* compiler-assigned addresses for all static memory state (globals, code etc.)
 security and failure semantics suggest memory isolation for each execution
But, we have a problem

e there is only one memory shared by all programs ...

Virtual Memory

Virtual Address Space

 an abstraction of the physical address space of main (i.e., physical) memory
° programs access memory using virtual addresses

* hardware translates virtual address to physical memory addresses
Process

* a program execution with a private virtual address space

¢ associated with authenticated user for access control & resource accounting
° running a program with 1 or more threads
MMU

° memory management unit

e the hardware that translates virtual address to physical address

« performs this translation on every memory access by program

Implementing the MMU

Let’s think of this in the simulator ...

e introduce a class to simulate the MMU hardware

class MMU extends MainMemory {
byte [] physicalMemory;
AddressSpace currentAddressSpace;

void setAddressSpace (AddressSpace* as);
byte readByte (int va) {
int pa = currentAddressSpace.translate (va);
return physicalMemory.read (pa);

}

* currentAddressSpace is a hardware register
» the address space performs virtual-to-physical address translation

Implementing Address Translation

class MMU extends MainMemory {
byte [] physicalMemory;
AddressSpace currentAddressSpace;

void setAddressSpace (AddressSpace* as);

int pa = currentAddressSpace.translate (va); |
return pnysicalMemory.read (pa); f
}

Goal

e translate any virtual address to a unique physical address (or none)
« fast and efficient hardware implementation

Let’s look at a couple of alternatives ...

Base and Bounds

An address space is
* a single, variable-size, non-expandable chunk of physical memory
* named by its base physical address and its length

0
As a class in the simulator

class AddressSpace {
int baseVA, basePA, bounds;

int translate (int va) { -
int offset = va - baseVA; o

if (offset < 0 || offset > bounds)
throw new lllegalAddressException (); L)

return basePA + offset;
[
}

Problems "

But, Address Space Use May Be Sparse

Issue

* the address space of a program execution is divided into regions

« for example: code, globals, heap, shared-libraries and stack

* there are large gaps of unused address space between these regions
Problem

* a single base-and-bounds mapping from virtual to physical addresses
* means that gaps in virtual address space will waste physical memory
* this is the Internal Fragmentation problem

7 wasted
Physical
Memory

Solution

Segmentation

An address space is

* a set of segments

A segment is

* a single, variable-size, non-expandable chunk of physical memory
* named by its base virtual address, physical address and length
Implementation in Simulator

class AddressSpace {
Segment segment[];

int translate (int va) {
for (int i=0; i<segments.length; i++) {
int offset = va - segment[i].baseVA;
if (offset >= 0 && offset < segment[i].bounds) {
pa = segment[i].basePA + offset;
return pa;

}

il 1IN

throw new lllegalAddressException (va);

Problem

But, Memory Use Not Known Statically

Issue

* segments are not expandable; their size is static

* some segments such as stack and heap change size dynamically
Problem

* segment size is chosen when segment is created

¢ too large and internal fragmentation wastes memory

* too small and stack or heap restricted

Wasted ‘ OR

Physical Broken

Memory I Program
Solution

* allow segments to expand?

But, There May Be No Room to Expand

Issue

* segments are contiguous chunks of physical memory

¢ a segment can only expand to fill space between it and the next segment
Problem

* there is no guarantee there will be room to expand a segment

« the available memory space is not where we want it (i.e., adjacent to segment)
* this is the External Fragmentation problem

Mayb:

E Sgrnee But, Now

[| Room to We're
Expand Stuck

Solution

But, Moving Segments is Expensive

Issue

« if there is space in memory to store expanding segment, but not where it is

« could move expanding segment or other segments to make room

» external fragmentation is resolved by moving things to consolidate free space
Problem

* moving is possible, but expensive

* to move a segment, all of its data must be copied

* segments are large and memory copying is expensive

E Maybe Move
So:’ne Other
:] Room to Segments
Expand to Make

Room

Expand Segments by Adding Segments

What we know

* segments should be non-expandable

* size can not be effectively determined statically
Idea

* instead of expanding a segment

* make a new one that is adjacent virtually, but not physically

= ... =
i —

Allocate a virtual addresses m ... n-1
New

Segment

virtual addresses n ... p-1

Problem

*oh no! another problem! what is it? why does it occur?

Eliminating External Fragmentation

The problem with what we are doing is

« allocating variable size segments leads to external fragmentation of memory
e this is an inherent problem with variable-size allocation

What about fixed sized allocation

* could we make every segment the same size?

* this eliminates external fragmentation

* but, if we make segments too big, we'll get internal fragmentation

* so, they need to be fairly small and so we’ll have lots of them

Problem

Translation with Many Segments

What is wrong with this approach if there are many segments?

class AddressSpace {
Segment segment(];

int translate (int va) {
for (int i=0; i<segments.length; i++) {
int offset = va - segment[i]l.baseVA;
if (offset > 0 && offset < segment[i].bounds) {
pa = segment[i].basePA + offset;
return pa;

}

throw new lllegalAddressException (va);

Now what?

* is there another way to locate the segment, when segments are fixed size?

Paging

Key Idea

* Address Space is divided into set of fixed-size segments called pages

* number pages in virtual address order

* page number = virtual address / page size

Page Table

« indexed by virtual page number (vpn)

* stores base physical address (actually address / page size (pfn) to save space)
* stores valid flag, because some segment numbers may be unused

<

Translation using a Page Table

class PageTableEntry {

lass Add S
boolean isValid; cass ressspace {

PageTableEntry pte[];

New terminology =]
* page a small, fixed-sized (4-KB) segment :)<

* page table virtual-to-physical translation table I —
° pte page table entry —
°vpn virtual page number S /

° pfn physical page frame number

* offset byte offset of address from beginning of page

The bit-shifty version

» assume that page size is 4-KB = 4096 = 212

* assume addresses are 32 bits

e then, vpn and pfn are 20 bits and offset is 12 bits

e pte is pfn plus valid bit, so 21 bits or so, say 4 bytes
* page table has 220 pte’s and so is 4-MB in size

The simulator code

class PageTableEntry { class AddressSpace {

The MMU Hardware

Translation performance

* translation occurs on every memory reference

*s0 it must be very fast most of the time

TLB

* translation lookaside buffer

* a cache that is fast to access and where recent translations are stored

TLB Miss

Context Switch

A context switch is

» switching between threads from different processes

e each process has a private address space and thus its own page table
Implementing a context switch

* change PTBR to point to new process’s page table

e invalidate stale TLB entries (may require flushing entire TLB)

 switch threads (save regs, switch stacks, restore regs)

* some application data is not in memory

« transfer from disk to memory, only when needed
Page Table

* only stores entries for pages that are in memory
* pages that are only on disk are marked invalid

* access to non-resident page- causes a page-fault interrupt

Memory Map

* a second data structure managed by the OS

« divides virtual address space into regions, each mapped to a file

* page-fault interrupt handler checks to see if faulted page is mapped

« if so, gets page from disk, update Page Table and restart faulted instruction

Page Replacement

* pages can now be removed from memory, transparent to program

* a replacement algorithm choose which pages should be resident and swaps out others

* a program execution

* a private virtual address space and a set of threads

* private address space required for static address allocation and isolation
Virtual Address Space

* a mapping from virtual addresses to physical memory addresses

* programs use virtual addresses

* the MMU translates them to physical address used by the memory hardware
Paging

* a way to implement address space translation

« divide virtual address space into small, fixed sized virtual page frames

* page table stores base physical address of every virtual page frame

* page table is indexed by virtual page frame number

* some virtual page frames have no physical page mapping

* some of these get data on demand from disk

}int pfn; _bciolear; isValid; PageTableEntry ptell; * requires a page table lookup Context Switch vs Thread Switch
. : in pfn;
|r1itn;(|"ji’|)1rflale=(‘llr;t/ng{GE szE: } int translate Gnt va) { « page-table-base register (PTBR) stores address of page table * changing page tables can be considerably slower than just changing threads
i = E_SIZE; i = 12;) -) i
e iyt CE-S17%: int offset = va & OxffE * think of page table as being in physical memory * mainly because of TLB _ _ .
elrseetum pte[vpn].pfn * PAGE_SIZE + offset; ifr(epttjer[:%r:]e-[i::)/ﬁ;i.f))fn << 12 offset: - page table is actually paged, but in a different way than the address space °new process has no valid TLB entries and thus suffers many TLB misses
throw new lllegalAddressException (va); e't;emw new lllegalAddressException (val; *lookup could be done in hardware (IA32) or software (IA64 option)
1
i s i 20
Demand Paging == Summary Address Space Translation Tradeoffs
—
Key Idea [swap | — Process

Single, variable-size, non-expandable segment

e internal fragmentation of segment due to sparse address use

Multiple, variable-size, non-expandable segments

« internal fragmentation of segments when size isn’t know statically

* external fragmentation of memory because segments are variable size

* moving segments would resolve fragmentation, but moving is costly
Expandable segments

* expansion must by physically contiguous, but there may not be room

* external fragmentation of memory requires moving segments to make room
Multiple, fixed-size, non-expandable segments

e called pages

* need to be small to avoid internal fragmentation, so there are many of them
* since there are many, need indexed lookup instead of search

