Introduction to Computer Systems

Unit 1d
Static Control Flow

Readings for Next 2 Lectures

Textbook
Condition Codes - Loops
3.6.1-3.6.5

Control Flow

The flow of control is
the sequence of instruction executions performed by a program
every program execution can be described by such a linear sequence
Controlling flow in languages like Java

Loops (s5-loop)

In Java public class Foo {

static int s = 0;
static int i;
static int a[] = new int[10];

static void foo () {
for (i=0; i<10; i++)
s +=alil;
}

}
InC

int s=0;
int i
inta[l ={2,4,6,8,10,12,14,16,18,20};

void foo () {
for (i=0; i<10; i++)
s += ali];

}

Implement loops in machine

int i;
int a[] ={2,4,6,8,10,12,14,16,18,20};
void foo () {
for (i=0; i<10; i++)
s += ali];

}

Can we implement this loop with the existing ISA?

Loop unrolling

Using array syntax

int s=0;

inti;

int a[10] = {2,4,6,8,10,12,14,16,18,20};
void foo () {

i=0;

s += alil;

i++;

s += afi];
i++;

s +=alil;
i++;

}

Using pointer-arithmetic syntax for access to a?
Will this technique generalize
will it work for all loops? why or why not?

Control-Flow ISA Extensions

Conditional branches
goto <address> if <condition>

Options for evaluating condition
unconditional
conditional based on value of a register (==0, >0 etc.)
goto <address> if <register> <condition> 0
conditional check result of last executed ALU instruction
goto <address> if last ALU result <condition> 0
Specifying target address

absolute 32-bit address
this requires a 6 byte instruction, which means jumps have high overhead
is this a serious problem? how would you decide?

are jumps for for/while/if etc. different from jumps for procedure call?

PC Relative Addressing

Motivation

jumps are common and so we want to make them as fast as possible

small instructions are faster than large ones, so make some jumps be two bytes
Observation

some jumps such as for/while/if etc. normally jump to a nearby instruction

so the jump distance can be described by a small number that could fit in a byte
PC Relative Addressing

specifies jump target as a delta from address of current instruction (actually next)

in the execute stage pc register stores the address of next sequential instruction

the pc-relative jump delta is applied to the value of the pc register

jumping with a delta of 0 jumps to the next instruction

jump instructions that use pc-relative addressing are called branches
Absolute Addressing

specifies jump target using full 32-bit address

use when the jump distance too large to fit in a byte

ISA for Static Control Flow @art 1)

ISA requirement (apparently)
at least one PC-relative jump
specify relative distance using real distance /2 — why?
at least one absolute jump
some conditional jumps (at least = and > 0)

make these PC-relative — why?

New instructions (so far)

Name Semantics Assembly| Machine
branch pc+00*2) bra 8-00
branch if equal pc + (@==pc+00*2) if r[c]== beqrc,a |9coo
branch if greater |pc + (a==pc+00*2) if r[c]>0 bgt rc, a acoo
jump pc+ a ja b--- aaaaaaaa

Implementing for loops ss-ioop)

for (i=0; i<10; i++)
s +=ali];

General form
in C and Java

for (<init>; <continue-condition>; <step>) <statement-block>

pseudo-code template

<init>
loop: goto end_loop if not <continue-condition>
<statement-block>
<step>
goto loop
end_loop:

This example

pseudo code template

i=0
loop: goto end_loop if not (i<10)
s+=ali]
i++
goto loop
end_loop:

ISA suggests two transformations
only conditional branches we have compared to 0, not 10

no need to store i and s in memory in each loop iteration, so use temp_ to indicate this

temp_i=0
temp_s=0
temp_t=temp_i-10
goto end_loop if temp_t==0
temp_s+=atemp_i]
temp_i++
goto loop
end_loop: s=temp_s
i=temp_i

loop:

temp_i=0
temp_s=0
temp_t=temp_i-10
goto end_loop if temp_t==
temp_s+=a[temp_i]
temp_i++
goto loop
end_loop: s=temp_s
i=temp_i

loop:

assembly code Assume that all variables are global variables

Id $0x0, r0 #r0=temp_i=0
Id $a,rl # rl = address of a[0]
Id $0x0, r2 #r2 =temp_s=0
Id $Oxfffffff6, r4 #r4 =-10

loop: mov r0, r5 #r5 = temp_i

add r4, r5
beq r5, end_loop
Id (r1,r0, 4), r3

#r5 = temp_i-10
if temp_i=10 goto +4
#r3 = altemp_i]

add r3,r2 # temp_s += altemp_i]
inc r0 # temp_i++
br loop # goto -7

#rl = address of s
#s =temp_s
#i=temp_i

end_loop: Id $s,rl
st r2, 0x0(rl)
st r0, Ox4(rl)

Implementing if-then-else e-in

if (a>b)
max = a;
else
max = b;

General form

in Java and C
if <condition> <then-statements> else <else-statements>
pseudo-code template

temp_c = not <condition>
goto then if (temp_c==0)
else: <else-statements>
goto end_if
then: <then-statements>

end_if:

This example

pseudo-code template

temp_a=a
temp_b=b
temp_c=temp_a-temp_b
goto then if (temp_c>0)
else: temp_max=temp_b
goto end_if
then: temp_max=temp_a
end_if: max=temp_max

assembly code

Id $a, r0 #10 = &

Id 0x0(r0), r0 #r0=a

Id $b,rl #rl=2&b

Id 0x0(rl), r1 #rl=>b

mov rl, r2

not r2

inc r2 #temp_c =

add r0, r2 #temp_c = a-b

bgt r2, then # if (a>b) goto +2
else: mov rl, r3 #temp_max = b

br end_if #goto +1
then: mov r0, r3 # temp_max = a
end_if: Id $max, rO #r0 = &max

st r3, 0x0(r0) # max = temp_max

Static Procedure Calls

Code Examples ss-static-cal

public class A {
static void ping () {}
} void foo () {
ping 0;

void ping () {}

public class Foo {
static void foo () {
A.ping 0;
}

Java C

a method is a sub-routine with a
name, arguments and local
scope

aprocedure is ...

. . a procedure call is ...
method invocation causes the

sub-routine to run with values
bound to arguments and with a
possible result bound to the
invocation

Diagraming a Procedure Call

void foo () { void ping () {}
ping 0;
}
Caller Callee
* goto ping
Jj ping

* do whatever ping does

» goto foo just after call to ping()
- 2?7?7777

* continue executing
Questions
How is RETURN implemented?

It’s a jump, but is the address a static property or a dynamic one?

Implementing Procedure Return

return address is

¢ the address the procedure jumps to when it completes

» the address of the instruction following the call that caused it to run
* a dynamic property of the program

questions

*how does procedure know the return address?

*how does it jump to a dynamic address?

saving the return address
e only the caller knows the address
¢ s0 the caller must save it before it makes the call

- caller will save the return address in ré

« there is a bit of a problem here if the callee makes a procedure call, more later ...
*we need a new instruction to read the PC
- we'll call it gpc
jumping back to return address

*we need new instruction to jump to an address stored in a register
- callee can assume return address is in r6

ISA for Static Control Flow @ar2)

New requirements

e read the value of the PC

*jump to a dynamically determined target address
Complete new set of instructions

Name S ti Assembly| Machine
branch pc + (a==pc+00*2) br a 8-00
branch if equal |pc « (a==pc+00*2) if r[c]== beq a 9coo
branch if greater |pc + (a==pc+00*2) if r[c]>0 bgt a acoo
jump pc+a ja b--- aaaaaaaa
|getpc ‘r[d] < pc ‘gpc rd ‘Gf—d ‘
|indirectjump ‘pc « r[t] + (o==pp*2) ‘j o(rt) ‘ctpp ‘

Compiling Procedure Call / Return

void foo () {
ping (;

foo: Id $ping, r0 #r0 = address of ping ()

gpc r6 # r6 = pc of next instruction
inca ré #r6=pc+ 4
i 0 # goto ping ()

void ping 0 {}

ping: j (r6) # return

